PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1073eng

UDC: 636.018:579.6

Acknowledgements:
Performed in accordance with the FRC BSAT RAS research plan for 2019-2021 within the framework of state order No. 0526-2019-0002

 

PROSPECTS OF ANTIQUORUM SUBSTANCES AS AN ALTERNATIVE TO ANTIBIOTIC THERAPY IN ANIMAL HUSBANDRY (review)

K.S. Kondrashova , D.B. Kosyan, K.N. Atlanderova, S.V. Lebedev

Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000, e-mail christinakondrashova94@yandex.ru (corresponding author ), kosyan.diana@mail.ru, atlander-kn@mail.ru, lsv74@list.ru

ORCID:
Kondrashova K.S. orcid.org/0000-0003-4907-9656
Atlanderova K.N. orcid.org/0000-0003-3977-4831
Kosyan D.B. orcid.org/0000-0002-2621-108X
Lebedev S.V. orcid.org/0000-0001-9485-7010

Received August 28, 2020

 

Frequent and inappropriate use of antibiotics in animal husbandry threatens to expand the spectrum of antibiotic-resistant bacteria. Quorum sensing (QS) is one of the mechanisms responsible for this process. For its implementation, bacteria use autoinducers, the special signaling molecules for information exchange (A.A. Miller et al., 2011). The studies to give insight of this mechanism have shed light on the existence of substances that act as Quorum sensing inhibitors (quorum suppressors) (B. Remy et al., 2018), which made such studies even more relevant (J. Bzdreng et al., 2017). In our review, we have summarized the latest data on the search and development of the biologically active compounds that can become an alternative to antibiotic drugs used in animal husbandry. These include bacterial enzymes (AGL-lactonases, AGL-acylases, decarboxylases, and deaminases) that can degrade quorum sensing signal autoinducers (V.C. Kalia et al., 2011), as well as α-amylases, β-glucanases, lipases, and proteases involved in the destruction of biofilms (R. Sharma et al., 2001). The antimicrobial properties are also characteristic of animal enzymes acylase I (D. Paul et al., 2010), paraoxonase (J.F. Teiber et al., 2008), and lactonase, plant enzymes laccase (R. Al-Hussaini et al., 2009), alliinase, thiol-dependent enzyme and lactonase derived from garlic and medicinal plants (A. Adonizio et al., 2008), enzymes of marine organisms, particularly bromoperoxidase of the algae Laminaria digitata, alginate lyases from algae, invertebrates, and marine microorganisms, and halogenated furanones of Delisea pulchra (S.A. Borchardt et al., 2001; M. Mane-field et al., 2000). In addition, we can distinguish antimicrobial digestive enzymes used as feed additives, e.g., phytase (O. Adeola et al., 2011), xylanase and lysozyme (G. Cheng et al., 2014). Studies of phytobiotics and essential oils as quorum sensing inhibitors are promising (V.I. Fisinin et al., 2018). Their inhibitory ability is shown due to the similarity of the chemical structures of some plant extracts to the structure of acyl-homoserine-lactone and inactivation of signaling molecules (R. Chevrot et al., 2006; F. Nazzaro et al., 2013). Another prospective alternative is the use of antimicrobial combinatins enabling a synergistic effect due to the variety of mechanisms of overcoming the recurrent bacterial communications and destroying persistent bacterial cells. These polypeptide cocktails may include the combination of antibiotics with natural compounds. The amtimicrobial efficacy has shown for combination of tobramycin and some plant extracts, partilularly cinnamaldehyde and baykalin hydrate against Burkholderia cenocepacia and Pseudomonas aeruginos (G. Brackman et al., 2011), a wide range of antibiotics, e.g., aminoglycosides (T.H. Jakobsen et al., 2012; M. Stenvang et al., 2016), quinolones (Q. Guo et al., 2016), polypeptide antibiotics (A. Furiga et al., 2016; Z.P. Bulman et al., 2017), cephalosporins and glycopeptides (D. Maura et al., 2017), and various quorum sensing inhibitors.

Keywords: quorum sensing, antibiotics, resistance, bacteria, plant extracts, enzymes.

 

REFERENCES

  1. Kalia V.C., Rani A., Lal S., Cheema S., Raut C.P. Combing databases reveals potential antibiotic producers. Expert Opinion on Drug Discovery, 2007, 2(2): 211-224 CrossRef
  2. Stanton T.B. A call for antibiotic alternatives research. Trends in Microbiology, 2013, 21(3): 111-113 CrossRef
  3. Marshall B.M., Levy S.B. Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 2011, 24(4): 718-733 CrossRef
  4. Vinogradova K.A., Bulgakova V.G., Polin A.N., Kozhevin P.A. Antibiotiki i khimioterapiya, 2013, 58(5-6): 38-48 (in Russ.).
  5. Castanon J.I. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science Journal, 2007, 86(11): 2466-2471 CrossRef
  6. Borchardt R.A., Rolston K.V. Antibiotic shortages: effective alternatives in the face of a growing problem. JAAPA: official journal of the American Academy of Physician Assistants, 2013, 26(2): 13-18 CrossRef
  7. Cooper M.A., Shlaes D. Fix the antibiotics pipeline. Nature, 2011, 472: 32-32 CrossRef
  8. Rasmussen T.B., Skindersoe M.E., Bjarnsholt T., Phipps R.K., Christensen K.B., Jensen P.O. Identity and effects of quorum sensing inhibitors produced by Penicillium species. Microbiology, 2005, 151(5): 1325-1340 CrossRef 
  9. CHerkashina N.V., Drozdova L.I., Makhortov V.L., Vasil'ev P.G., Shcherbakov M.G., Demina L.V., Il'yazov A.A., Sirik M. Agrarnyi vestnik Urala, 2011, 82(3): 39-42 (in Russ.).
  10. Vranakis I., Goniotakis I., Psaroulaki A., Sandalakis V., Tselentis Y., Gevaert K. Proteome studies of bacterial antibiotic resistance mechanisms. Journal of Proteomics, 2014, 97: 88-99 CrossRef
  11. Kester J.C., Fortune S.M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49(2): 91-101 CrossRef
  12. Woo P.C., To A.P., Lau S.K., Yuen K.Y. Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. Medical Hypotheses, 2003, 61(4): 503-508 CrossRef
  13. Norman A., Hansen L.H., Sørensen S.J. Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1527): 2275-2289 CrossRef
  14. Martinez J.L., Baquero F. Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 2000, 44(7): 1771-1777 CrossRef
  15. Cirz R.T., Chin J.K., Andes D.R., de Crécy-Lagard V., Craig W.A., Romesberg F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology, 2005, 3(6): e176 CrossRef
  16. Kohanski M.A., DePristo M.A., Collins J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell, 2010, 37(3): 311-320 CrossRef
  17. Sánchez-Romero M.A., Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proceedings of the National Academy of Sciences, 2014, 111(1): 355-360 CrossRef
  18. Wright G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Reviews, 2005, 57(10): 1451-1470 CrossRef
  19. Ramirez M.S., Tolmasky M.E. Aminoglycoside modifying enzymes. Drug Resistance Updates, 2010, 13(6): 151-171 CrossRef
  20. Tillotson G.S., Theriault N. New and alternative approaches to tackling antibiotic resistance. F1000Prime Reports, 2013, 5: 51 CrossRef
  21. Wilson D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 2014, 12(1): 35-48 CrossRef
  22. Liu L.Y., Ye C.X., Soteyome T., Zhao X.H., Xia J., Xu W.Y., Mao Y.Z., Peng R.X., Chen J.X., Xu Z.B. Inhibitory effects of two types of food additives on biofilm formation by foodborne pathogens. Microbiology Open, 2019, 8(9): e00853 CrossRef
  23. Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs, 2013, 69(12): 1555-1623 CrossRef
  24. Poole K., Russell A., Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Advanced Drug Delivery Reviews, 2005, 57(10): 1443-1445 CrossRef
  25. Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6): 1037-1050 CrossRef
  26. Kumar S., Varela M.F. Biochemistry of bacterial multidrug efflux pumps. International Journal of Molecular Science, 2012, 13(4): 4484-4495 CrossRef
  27. Wasaznik A., Grinholc M., Bielawski K.P. Active efflux as the multidrug resistance mechanism. Postepy higienyi medycyny doswiadczalnej (Online),2009, 63: 123-133.
  28. Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009, 48(1): 1-2 CrossRef
  29. Miller A.A., Miller P.F. Emerging trends in antibacterial discovery: answering the call to arms. Caister Academic Press, Norfolk, UK, 2011.
  30. Anwar H., Dasgupta M.K., Costerton J.W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrobial Agents and Chemotherapy, 1990, 34(11): 2043-2046 CrossRef
  31. Huma N., Shankar P., Kushwah J., Bhushan A., Joshi J., Mukherjee T. Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. Journal of Microbiology and Biotechnology, 2011, 21(10): 1001-1011 CrossRef
  32. Jamuna Bai A., Rai V.R. Bacterial quorum sensing and food industry. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(3): 183-1193 CrossRef
  33. Remy B., Mion S., Plener L., Elias M., Chabrière E., Daudé D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Frontiers in Pharmacology, 2018, 9: 203 CrossRef
  34. Bzdreng J., Daude D., Remy B., Jacquet P., Plener L., Elias M. Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 2017, 267: 104-115 CrossRef
  35. Khmel' I.A. Mikrobiologiya, 2006, 75(4): 457-464 (in Russ.).
  36. Heilmann S., Krishna S., Kerr B. Why do bacteria regulate public goods by quorum sensing? — how the shapes of cost and benefit functions determine the form of optimal regulation. Frontiers in Microbiology, 2015, 6: 767 CrossRef
  37. Monnet V., Juillard V., Gardan R. Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology, 2016, 42(3): 339-351 CrossRef
  38. Schuster M., Sexton D.J., Diggle S.P., Greenberg E.P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology, 2013, 67: 43-63 CrossRef
  39. Lee J., Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015, 6(1): 26-41 CrossRef
  40. Plener L., Lorenz N., Reiger M., Ramalho T., Gerland U., Jung K. The phosphorylation flow of the Vibrio harveyi quorum-sensing cascade determines levels of phenotypic heterogeneity in the population. Journal of Bacteriology, 2015, 197(10): 1747-1756 CrossRef
  41. Hawver L.A., Jung S.A., Ng W.L. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 2016, 40(5): 738-752 CrossRef
  42. Zhou L., Zhang L.H., Cámara M., He Y.W. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4): 293-303 CrossRef
  43. Tiaden A., Hilbi H. a-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors, 2012, 12(3): 2899-2919 CrossRef
  44. Kendall M.M., Sperandio V. Quorum sensing by enteric pathogens. Current Opinion in Gastroenterology, 2007, 23(1): 10-15 CrossRef
  45. Heeb S., Fletcher M.P., Chhabra S.R., Diggle S.P., Williams P., Camara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 2011, 35(2): 247-274 CrossRef
  46. Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415: 545-549 CrossRef
  47. Dong Y.H., Xu J. L., Li X.Z., Zhang, L. H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 2000, 97(7): 3526-3531 CrossRef
  48. Pumbwe L., Skilbeck C.A., Wexler H.M. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microbial Ecology, 2008, 56(3): 412-419 CrossRef
  49. Zhao X., Yu Z., Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 2020, 8(3): 425 CrossRef
  50. Tang K., Zhang X.-H. Quorum quenching agents: resources for antivirulence therapy. Marine Drugs, 2014, 12(6): 3245-3282 CrossRef
  51. Park J., Jagasia R., Kaufmann G.F., Mathison J.C., Ruiz D.I., Moss J.A. Infection control by antibody disruption of bacterial quorum sensing signaling. Chemistry & Biology, 2007, 14(10): 1119-1127 CrossRef
  52. Kato N., Morohoshi T., Nozawa T., Matsumoto H., Ikeda T. Control of gram-negative bacterial quorum sensing with cyclodextrin immobilized cellulose ether gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56: 55-59 CrossRef
  53. Kato N., Tanaka T., Nakagawa S., Morohoshi T., Hiratani K., Ikeda T. Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57: 419-423 CrossRef
  54. Morohoshi T., Tokita K., Ito S., Saito Y., Maeda S., Kato N. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. Journal of Bioscience and Bioengineering, 2013, 116(2): 175-179 CrossRef
  55. Fetzner S. Quorum quenching enzymes. Journal of Biotechnology, 2015, 201: 2-14 CrossRef
  56. Carlier A., Chevrot R., Dessaux Y., Faure D. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Molecular Plant-Microbe Interactions, 2004, 17(9): 951-957 CrossRef
  57. Parsek M.R., Val D.L., Hanzelka B.L., Cronan J.E. Jr., Greenberg E.P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 1999, 96(8): 4360-4365 CrossRef
  58. Hentzer M., Wu H., Andersen J.B., Riedel K., Rasmussen T.B., Bagge N. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal, 2013, 22(15): 3803-3815 CrossRef
  59. Dell’Acqua G., Giacometti A., Cironi O., Ghiselli R., Saba V., Scalise G. Suppression of drug-resistant Staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. Journal of Infectious Diseases, 2004, 190(2): 316-320 CrossRef
  60. Amara N., Krom B.P., Kaufmann G.F., Meijler M.M. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chemical Reviews, 2011, 111(1): 195-208 CrossRef
  61. Ozer E.A., Pezzulo A., Shih D.M., Chun C., Furlong C., Lusi, A.J. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiology Lettters, 2005, 253(1): 29-37 CrossRef
  62. Kalia V.C., Purohit H.J. Quenching the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology, 2011, 37(2): 121-140 CrossRef
  63. Xavier K.B., Bassler B.L. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437: 750-753 CrossRef
  64. Singh R.P., Desouky S.E., Nakayama J. Quorum quenching strategy targeting gram-positive pathogenic bacteria. Advances in Experimental Medicine and Biology, 2016, 901: 109-130 CrossRef
  65. Delago A., Mandabi A., Meijler M. M. Natural quorum sensing inhibitors — small molecules, big messages. Israel Journal of Chemistry, 2016, 56(5): 310-320 CrossRef
  66. Ueda A., Attila C., Whiteley M., Wood T.K. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microbial Biotechnology, 2009, 2(1): 62-74 CrossRef
  67. Swatton J.E., Davenport P.W., Maunders E.A., Griffin J.L., Lilley K.S., Welch M. Impact of azithromycin on the quorum sensing-controlled proteome of Pseudomonas aeruginosa. PLoS ONE, 2016, 11(1): e0147698 CrossRef
  68. Defoirdt T., Brackman G., Coenye T. Quorum sensing inhibitors: how strong is the evidence? Trends in Microbiology, 2013, 21(12): 619-624 CrossRef
  69. Nalca Y., Jänsch L., Bredenbruch F., Geffers R., Buer J., Häussler S. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrobial Agents and Chemotherapy, 2006, 50(5): 1680-1688 CrossRef
  70. Weiland-Bräuer N., Kisch M.J., Pinnow N., Liese A., Schmitz R.A. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Frontiers in Microbiology, 2016, 7: 1098 CrossRef
  71. Bjarnsholt T., Jensen P.Ø., Burmølle M., Hentzer M., Haagensen J.A., Hougen H.P. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorumsensing dependent. Microbiology, 2005, 151(2): 373-383 CrossRef
  72. Seal B.S., Lillehoj H.S., Donovan D.M., Gay C.G. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Animal Health Research Reviews, 2013, 14(1): 78-87 CrossRef
  73. Hanafi E.M., Danial E.N. Natural antimicrobials in the pipeline and possible synergism with antibiotics to overcome microbial resistance. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12(4): 15-21 CrossRef
  74. Augustin M., Ali-Vehmas T., Atroshi F. Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. Journal of Pharmacy and Pharmaceutical Sciences,2004, 7(1): 55-64.
  75. Longhi C., Scoarughi G.L., Poggiali F., Cellini A., Carpentieri A., Seganti L. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microbial Pathogenesis, 2008, 45(1): 45-52 CrossRef
  76. Miao J., Pangule R.C., Paskaleva E.E., Hwang E.E., Kane R.S., Linhardt R.J. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 2011, 32(36): 9557-9567 CrossRef
  77. Kiri N., Archer G., Climo M.W. Combinations of lysostaphin with betalactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2002, 46(6): 2017-2020 CrossRef
  78. Lian Z., Ma Z., Wei J., Liu H. Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochemistry, 2012, 47(2): 201-208 CrossRef
  79. Abaturov A.E. Polisakharidrazrushayushchie fermenty kak agenty, dispergiruyushchie bakterial'nye bioplenki. Zdorov'e rebenka, 2020, 15(4): 271-278 CrossRef
  80. Molobela I.P., Cloete T.E., Mervyn B. Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. African Journal of Microbiology Research, 2010, 4(14): 1515-1524.
  81. Romero M., Martin-Cuadrado A.B., Roca-Rivada A., Cabello A.M., Otero A. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiology Ecology, 2011, 75(2): 205-217 CrossRef
  82. Park S.Y., Hwang B.J., Shin M.H., Kim J.A., Kim H.K., Lee J.K. N-acyl-homoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiology Letters, 2006, 261(1): 102-108 CrossRef
  83. Uroz S., Oger P.M., Chapelle E., Adeline M.T., Faure D., Dessaux Y.A. Rhodococcus qsdA-encoded enzyme defines a novel class of large spectrum quorum-quenching lactonases. Applied and Environmental Microbiology, 2008, 74(5): 1357-1366 CrossRef
  84. Bentley S.D., Chater K.F., Cerdeño-Tárraga A.M., Challis G.L., Thomson N.R., James K.D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417: 141-147 CrossRef
  85. Kumar S., Kikon K., Upadhyay A., Kanwar S.S., Gupta R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 2005, 41(1): 34-44 CrossRef
  86. Sharma R., Chisti Y., Banerjee U.C. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19(8): 627-662 CrossRef
  87. Paul D., Kim Y.S., Ponnusamy K., Kweon J.H. Application of quorum quenching to inhibit biofilm formation. Environmental Engineering Science, 2009, 26(8): 1319-1324 CrossRef
  88. Teiber J.F., Horke S., Haines D.C., Chowdhary P.K., Xiao J., Kramer G.L. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infection and Immunity, 2008, 76(6): 2512-2519 CrossRef
  89. Stoltz D.A., Ozer E.A., Ng C.J., Yu J.M., Reddy S.T., Lusis A.J. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine trachea epithelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2007, 292(4): 852-860 CrossRef
  90. Al-Hussaini R., Mahasneh A.M. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecule, 2009, 14(9): 3425-3435 CrossRef
  91. Adonizio A., Kong K.F., Mathee K. Inhibition of quorum sensingcontrolled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrobial Agents and Chemotherapy, 2008, 52(1): 198-203 CrossRef
  92. Fatima Q., Zahin M., Khan M.S., Ahmad I. Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian Journal of Medical Microbiology, 2010, 50: 238-242 CrossRef
  93. Borchardt S.A., Allain E.J., Michels J.J., Stearns G.W., Kelly R.F., McCoy W.F. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Applied and Environmental Microbiology, 2001, 67(7): 3174-3179 CrossRef
  94. Manefield M., Harris L., Rice S.A., de Nys R., Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Applied and Environmental Microbiology, 2000, 66(5): 2079-2084 CrossRef
  95. Ren D., Bedzyk L.A., Ye R.W., Thomas S.M., Wood T.K. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnology and Bioengineering, 2004, 88(5): 630-642 CrossRef
  96. Alkawash M.A., Soothill J.S., Schiller N.L. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS, 2006, 114(2): 131-138 CrossRef
  97. Lamppa J.W., Ackerman M.E., Lai J.I., Scanlon T.C., Griswold K.E. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity. PLoS ONE, 2011, 6(2): e17042 CrossRef
  98. Bedford M.R., Cowieson A.J. Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology, 2012, 173(1-2): 76-85 CrossRef
  99. Adeola O., Cowieson A.J. Board invited review: opportunities and challenges in using exogenous enzymes to improve no ruminant animal production. Journal of Animal Science, 2011, 89(10): 3189-3218 CrossRef
  100. Cheng G., Hao H., Xie S., Wang X., Dai M, Huang L. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology, 2014, 5: 217 CrossRef
  101. Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal,2013, 8(1): 97-109 CrossRef
  102. Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Veterinary Medicine, 2010, 55(5): 199-224 CrossRef
  103. Hashemi S.R., Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Veterinary Research Communications, 2011, 35(3): 169-180 CrossRef
  104. Abreu A.C., McBain A.J., Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 2012, 29(9): 1007-1021 CrossRef
  105. Zanchi R., Canzi E., Molteni L., Scozzoli M. Effect of Camellia sinensis L. whole plant extract on piglet intestinal ecosystem. Annals of Microbiology, 2008, 58: 147-152 CrossRef
  106. Manzanilla E.G., Perez J.F., Martin M., Kamel C., Baucells F., Gasa J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science, 2004, 82(11): 3210-3218 CrossRef
  107. Namkung H., Li M., Gong J., Yu H., Cottrill M., De Lange C.F.M. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Canadian Journal of Animal Science, 2004, 84(4): 697-704 CrossRef
  108. Borovan L. Plant alkaloids enhance performance of animals and improve the utilizability of amino acids. Krmivarstvi, 2004, 6: 36-37 (in Czech). 
  109. Tatara M.R., Sliwa E., Dudek K., Gawron A., Piersiak T., Dobrowolski P. Aged garlic extract and allicin improve performance and gastrointestinal tract development of piglets reared in artificial sow. Annals of Agricultural and Environmental Medicine, 2008, 15(1):  63-69.
  110. Oetting L.L., Utiyama C.E., Giani P.A., Ruiz U.D., Miyada V.S. Effects of herbal extracts and antimicrobials on apparent digestibility, performance, organs morphometry and intestinal histology of weanling pigs. Brazilian Journal of Animal Science, 2006, 35(4): 1389-1397 CrossRef
  111. Costa L.B., PanhozaTse M.L., Miyada V.S. Herbal extracts as alternatives to antimicrobial growth for weanling pigs. Brazilian Journal of Animal Science, 2007,36(3): 589-595 CrossRef
  112. Hashemi S.R., Davoodi H. Phytogenics as new class of feed additive in poultry industry. Journal of Animal and Veterinary Advances, 2010, 9(17): 2295-2304 CrossRef
  113. Windisch W., Schedle K., Plitzner C., Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 2008, 86: E140-E148 CrossRef
  114. Simões M., Bennett R.N., Rosa E.A. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 2009, 26(6): 746-757 CrossRef
  115. Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of bacterial cell-cell signaling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 2010, 109(2): 515-527 CrossRef
  116. Chevrot R., Rosen R., Haudecoeur E., Cirou A., Shelp B.J., Ron E. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 2006, 103(19): 7460-1464 CrossRef
  117. Nazzaro F., Fratianni F., Coppola R. Quorum sensing and phytochemicals. International Journal of Molecular Sciences, 2013, 14(6): 12607-12619 CrossRef
  118. Zhao W.H., Hu Z.Q., Hara Y., Shimamura T. Inhibition by epigallocatechin gallate (EGCg) of conjugative R plasmid transfer in Escherichia coli. Journal of Infection and Chemotherapy, 2001, 7(3): 195-197 CrossRef
  119. Girennavar B., Cepeda M.L., Soni K.A., Vikram A., Jesudhasan P., Jayaprakasha G.K. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. International Journal of Food Microbiology, 2008, 125(2): 204-208 CrossRef
  120. Hamoud R., Zimmermann S., Reichling J., Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine, 2014, 21(4): 443-447 CrossRef
  121. Brackman G., Cos P., Maes L., Nelis H.J., Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 2011, 55(6): 2655-2661 CrossRef
  122. Brackman G., Hillaert U., Van Calenbergh S., Nelis H.J., Coenye T. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Research in Microbiology, 2009, 160(2): 144-151 CrossRef
  123. Yang L., Rybtke M.T., Jakobsen T.H., Hentzer M., Bjarnsholt T., Givskov M. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53(6): 2432-2443 CrossRef
  124. Wei Q., Bhasme P., Wang Z., Wang L., Wang S., Zeng Y., Wang Y., Ma L. Z., Li Y. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. Journal of Ethnopharmacology, 2020, 248: 112-272 CrossRef
  125. Truchado P., Gimenez-Bastida J.A., Larrosa M., Castro-Ibanez I., Espin J.C., Tomas-Barberan F.A., Garcia-Conesa M.T., Allende A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. Journal of Agricultural and Food Chemistru, 2012, 60(36): 8885-8894 CrossRef
  126. Maznev H.I. Entsiklopediya lekarstvennykh rastenii [Encyclopedia of medicinal plants]. M., 2004 (in Russ.).
  127. Fisinin V.I., Ushakov A.S., Duskaev G.K., Kazachkova N.M., Nurzhanov B.S., Rakhmatullin Sh.G., Levakhin G.I. Mixtures of biologically active substances of oak bark extracts change immunological and productive indicators of broilers. Agricultural Biology[Sel'skokhozyaistvennaya biologiya], 2018, 53(2): 385-392 CrossRef
  128. Tolmacheva A.A. Lekarstvennye rasteniya i ikh komponenty kak ingibitory sistemy quorum sensing pervogo tipa u bakterii (na primere Chromobacterium violaceum). Avtoreferat kandidatskoi dissertatsii [Medicinal plants and their components as inhibitors of the quorum sensing system of the first type in bacteria (on the example of Chromobacterium violaceum). PhD Thesis]. Saratov, 2016 (in Russ.).
  129. Deryabin D.G., Tolmacheva A.A. Antibacterial and anti-quorum sensing molecular composition derived from quercus cortex(Oak bark) extract. Molecules, 2015, 20(9): 17093-17108 CrossRef
  130. Duskaev G.K., Drozdova E.A., Aleshina E.S., Bezryadina A.S. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2017, 211(11): 84-87 (in Russ.).
  131. Buryakov N.P., Buryakova M.A. IV International conference «Actual points for veterinary homoeopathy». St. Peterburg, 2006: 168-171.
  132. Warnke P.H., Becker S.T., Podschun R., Sivananthan S., Springer I.N., Russo P.A. The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. Cranio-Maxillofacial Surgery, 2009, 37(7): 392-397 CrossRef
  133. Mulyaningsih S., Sporer F., Zimmermann S., Reichling J., Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 2010, 17(13): 1061-1066 CrossRef
  134. Van Vuuren S.F., Suliman S., Viljoen A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in Applied Microbiology, 2009, 48(4): 440-446 CrossRef
  135. Niu C., Afre S., Gilbert E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in Applied Microbiology, 2006, 43(5): 489-494 CrossRef
  136. Sarica S., Ciftci A., Demir E., Kilinc K., Yildirim Y. Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. South African Journal of Animal Science, 2005, 35(1): 61-72 CrossRef
  137. Markoishvili K., Tsitlanadze G., Katsarava R., Morris J.G. Jr., Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly (ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 2002, 41(7): 453-458 CrossRef
  138. Balaban N., Gov Y., Bitler A., Boelaert J.R. Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney International, 2003, 63(1): 340-345 CrossRef
  139. Giacometti A., Cirioni O., Ghiselli R., Dell’Acqua G., Orlando F., D’Amato G. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides, 2005, 26(2): 169-175 CrossRef
  140. Starkey M., Lepine F., Maura D., Bandyopadhaya A., Lesic B., He J. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathogens, 2014, 10(8): e1004321 CrossRef
  141. Maura D., Rahme L.G. Pharmacological inhibition of the Pseudomonas aeruginosa MvfR quorum sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrobial Agents and Chemotherapy, 2017, 61(12): e01362-17 CrossRef
  142. Jakobsen T.H., van Gennip M., Phipps R.K., Shanmugham M.S., Christensen L.D., Alhede M., Skindersoe M.E., Rasmussen T.B., Friedrich K., Uthe F., Jensen P.Ø., Moser C., Nielsen K.F., Eberl L., Larsen T.O., Tanner D., Høiby N., Bjarnsholt T., Givskov M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrobial Agents and Chemotherapy, 2012, 56(5): 2314-2325 CrossRef
  143. Stenvang M., Dueholm M.S., Vad B.S., Seviour T., Zeng G., Geifman-Shochat S. Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. Journal of Biological Chemistry, 2016, 291(51): 26540-26553 CrossRef
  144. Guo Q., Wei Y., Xia B., Jin Y., Liu C., Pan X. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Scientific Reports, 2016, 6: 19141 CrossRef
  145. Furiga A., Lajoie B., El Hage S., Baziard G., Roques C. Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrobial Agents and Chemotherapy, 2016, 60: 1676-1686 CrossRef
  146. Bulman Z.P., Ly N.S., Lenhard J.R., Holden P.N., Bulitta J.B., Tsuji B.T. Influence of rhlR and lasR on polymyxin pharmacodynamics in Pseudomonas aeruginosa and implications for quorum sensing inhibition with azithromycin. Antimicrobial Agents and Chemotherapy, 2017, 61: e00096-16 CrossRef
  147. Das M.C., Sandhu P., Gupta P., Rudrapaul P., De U.C., Tribedi P. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Scientific Reports, 2015, 6: 23347 CrossRef
  148. Gupta P., Chhibber S., Harjai K. Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns, 2015, 41(1): 153-162 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)