PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.6.1257eng

UDC: 636.2:619:579

 

PHENOTYPIC RESISTANCE TO ANTIBIOTICS OF Staphylococcus aureus STRAINS ISOLATED FROM COW MILK

O.A. Artemeva1, D.A. Nikanova1, E.N. Kolodina1, V.V. Romanova2, F.A. Brovko1, N.A. Zinovieva1

1Ernst Federal Science Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail vijmikrob@mail.ru (✉ corresponding author), DAP2189@gmail.com, n_zinovieva@mail.ru, brovko@bibch.ru;
2Safronov Yakutsk Research Institute of Agriculture, Siberian Branch RAS, 23/1, ul. Bestuzheva-Marlinskogo, Yakutsk, Sakha Republic, 677001 Russia, e-mail varvara.romanova.59@mail.ru

ORCID:
Artemeva O.A. orcid.org/0000-0001-7706-4182
Romanova V.V. orcid.org/0000-0001-6840-0463
Nikanova D.A. orcid.org/0000-0001-5164-244X
Brovko F.A. orcid.org/0000-0003-1088-4906
Kolodina E.N. orcid.org/0000-0002-4017-3390
Zinovieva N.A. orcid.org/0000-0003-4017-6863

Received September 27, 2019

 

The emergence of multiresistant strains has sharply escalated in recent decades due to the wide use of antimicrobials. The infections caused by Staphylococcus aureus are most common in highly productive dairy animals. The aim of our work was to assess the phenotypic resistance of S. aureus strains isolated from cow milk to the main antibacterial drugs used to treat various forms of mastitis in the Russian Federation, as well as to determine their minimum inhibitory concentrations (MIC, MIC50 and MIC90). From January to December 2018 milk samples were taken from cows of black-motley Holstein breed at the farms of the Central region of the Russian Federation. A total of 314 milk samples were examined and 447 potential staphylococci were isolated. All isolates were evaluated by conventional phenotypic methods. Only 103 isolates met all the identification criteria and were used for further analysis. The disk diffusion method (DDM) was used to test the susceptibility of the isolated strains to the following antibiotics: penicillin (PEN, 10 U), oxacillin (OX, 10 μg), gentamicin (GN, 10 μg), erythromycin (ER, 15 μg), and lincomycin (LN, 15 mcg), rifampicin (RF, 5 mcg), ciprofloxacin (CP, 5 mcg), vancomycin (VA, 30 μg), fusidine (FZ, 10 μg) (Pharmacotherapy Research Center, Russia; Mueller Hinton Agar, HiMedia Laboratories Pvt. Ltd., India). A method of double (Log2) serial dilutions of antibiotics (penicillin, erythromycin, gentamicin, and ciprofloxacin) in TSB medium (from 64 to 0.125 mg/l) with 5×105 CFU/ml inoculum was used to determine the minimum inhibitory concentrations (MIC, MIC50, MIC90) and LD50. The incubation was carried out at 37 °C for 20 hours (220 rpm). The bacterial growth in TSB medium with antibiotics was evaluated by plating on Baird Parker Agar medium (HiMedia Laboratories Pvt. Ltd., India). The interpretation of the results was carried out according to the recommendation of The European Committee on Antimicrobial Susceptibility Testing (EUCAST). The highest degree of resistance was observed to erythromycin (82.5 %) and fusidine (75.7 %). Seven of 103 strains tested were susceptible to all studied antibiotics, 96 isolates were resistant to at least one of them. When assessing multiple resistance (MAR), 65 (63.1 %) strains were resistant to four or more antibiotics. The predominant phenotypes for the isolates were ER + LN + FZ and ER + CP (58.3 % and 47.6 %, respectively). A total of 31 strains of the 47 isolates DDM-resistant to penicillin grew at ≥ 64 mg/l penicillin, while in the concentration range of ≤ 1.0 mg/l, the growth was observed in 33.0 % of the strains. Fifteen of the 85 erythromycin-resistant isolates showed growth at MIC ≥ 64 mg/l; only 7 strains out of 18 DDM-susceptible ones were in the MIC ≤ 0.5 mg/l range. A total of 29 (28.2 %) of the 103 studied strains were DDM-resistant to gentamicin, 72 (60.2 %) showed growth at MIC ≥ 0.5 mg/l, and 5 strains at MIC ≥ 64.0 mg/l. Only 2 of the 49 DDM-resistant strains grew at MIC ≥ 64 mg/l. It is important to point out that the MIC50 was not in the susceptible range for any of the studied antibiotics, and the MIC90 showed the susceptible range for penicillins, aminoglycosides, and fluoroquinolones (> 0.5, > 0.25, and > 0.25 mg/l, respectively). In our study the high phenotypic resistance indices of S. aureus isolates from cow milk emphasizes the importance of routine screening of S. aureus isolates for inducible phenotype resistance.

Keywords: mastitis, Staphylococcus aureus, antibiotics, antimicrobial susceptibility, MIC, phenotypic resistance.

 

REFERENCES

  1. Programma SKAT (Strategiya Kontrolya Antimikrobnoi Terapii) pri okazanii statsionarnoi meditsinskoi pomoshchi: Rossiiskie klinicheskie rekomendatsii /Pod redaktsiei S.V. Yakovleva, N.I. Briko, S.V. Sidorenko, D.N. Protsenko [SCAT (Antimicrobial Therapy Control Strategy) for inpatient care: Russian clinical guidelines. S.V. Yakovlev, N.I. Briko, S.V. Sidorenko, D.N. Protsenko (eds.)]. Moscow, 2018 (in Russ.).
  2. Koba I.S., Reshetka M.B. Effektivnoe zhivotnovodstvo, 2013, 3(89): 22-23 (in Russ.).
  3. Gamayunov V.M., Amirov A.Kh. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 85-letiyu so dnya rozhdeniya G.A. Cheremisova i 50-letiyu sozdaniya Voronezhskoi shkoly veterinarnykh akusherov «Sovremennye problemy veterinarnogo akusherstva i biotekhnologii vosproizvedeniya zhivotnykh» [Proc. Int. Conf. dedicated to the 85th birthday of G.A. Cheremisov and the 50th anniversary of the Voronezh school of veterinary obstetricians «Modern problems of veterinary obstetrics and animal reproduction biotechnology»]. Voronezh, 2012: 143-146 (in Russ.).
  4. Klimov N.T. Eksperimental'naya i klinicheskaya farmakologiya lekarstvennykh preparatov na osnove dioksidina i doksitsiklina i ikh effektivnost' pri mastite u korov. Avtoreferat doktorskoi dissertatsii [Experimental and clinical pharmacology of drugs based on dioxidine and doxycycline and their effectiveness in mastitis in cows. DSc Thesis]. Voronezh, 2009 (in Russ.).
  5. Bulgakova V.G., Vinogradova K.A., Orlova T.I., Kozhevin P.A., Polin A.N. Antibiotiki i khimioterapiya, 2014, 59(1-2): 36-43 (in Russ.).
  6. Tsai S.H., Lai H.C., Hu S.T. Subinhibitory doses of aminoglycoside antibiotics induce changes in the phenotype of Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2015, 59(10): 6161-6169 CrossRef
  7. Wang Q., Sun F.-J., Liu Y. Xiong L.-R., Xie L.-L., Xia P.-Y. Enhancement of biofilm formation by sub inhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2010, 54(6): 2707-2711 CrossRef
  8. Kaplan J.B. Antibiotic-induced biofilm formation. The International Journal of Artificial Organs, 2011, 34(9): 737-751 CrossRef
  9. Sanchez C.J. Jr., Shiels S.M., Tennent D.J., Hardy S.K., Murray C.K., Wenke J.C. Rifamycin derivatives are effective against staphylococcal biofilms in vitro and elutable from PMMA. Clinical Orthopaedics and Related Research, 2015, 473(9): 2874-2884 CrossRef
  10. Subrt N., Mesak L.R., Davies J. Modulation of virulence gene expression by cell wall active antibiotics in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2011, 66(5): 979-984 CrossRef
  11. Viana D., Comos M., McAdam P.R., Ward M.J., Selva L., Guinane C.M., González-Muñoz C.M., Tristan A., Foster S.J., Fitzgerald J.R., Penadés J.R. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nature Genetics, 2015, 47(4): 361-367 CrossRef
  12. Rodriges Kh. Meditsinskii sovet, 2017, 1: 34-44 CrossRef (in Russ.).
  13. Koymans K.J., Vrieling M., Gorham R.D. Jr., van Strijp A.G.J. Staphylococcal immune evasion proteins: structure, function, and host adaptation. In: Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol. 409. F. Bagnoli, R. Rappuoli, G. Grandi (eds.). Springer, Cham, 2015: 441-489 CrossRef
  14. Koop G., Vrieling M., Storisteanu D.M.L., Lok L.S.C., Monie T., van Wigcheren G., Raisen C., Ba X., Gleadall N., Hadjirin N., Timmerman A.J., Wagenaar J.A., Klunder H.M., Fitzgerald J.R., Zadoks R., Paterson G.K., Torres C., Waller A.S., Loeffler A., Loncaric I., Hoet A.E., Bergström K., de Martino L., Pomba C., de Lencastre H., Slama K.B., Gharsa H., Richardson E.J., Chilvers E.R., Haas C., Kessel K., Strijp J.A., Harrison E.M., Holmes M.A. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Scientific Reports, 2017, 7: 40660 CrossRef
  15. Löffler B., Hussain M., Grundmeier M., Brück M., Holzinger D., Varga G., Roth J., Kahl B.C., Proctor R.A., Peters G. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathogens, 2010, 6(1): e1000715 CrossRef
  16. Vrieling M., Boerhout E. M., van Wigcheren G.F., Koymans K.J., Mols-Vorstermans T.J., de Haas C.J.C., Aerts P.C., Daemen I.J.J.M., van Kessel K.P.M., Koets A.P., Rutten V.P.M.G., Nuijten P.J.M., van Strijp J.A.G., Benedictus L. LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Scientific Reports, 2016, 6(1): 37759 CrossRef
  17. de Jong N.W.M., Vrieling M., Garcia B.L., Koop G., Brettmann M., Aerts P.C., Ruyken M., van Strijp J.A.G., Holmes M., Harrison E.M., Geisbrecht B.V., Rooijakkers S.H.M. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. Journal of Biological Chemistry, 2018, 293(12): 4468-4477 CrossRef
  18. Kozlova Yu.N., Fomenko N.V., Morozova V.V., Saranina I.V., Tikunov A.Yu., Ganichev D.A., Samokhin A.G., Pavlov V.V., Rozhnova O.M., Bondar' I.A., Zenkova E.V., Nimaev V.V., Klimontov V.V., Tikunova N.V. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(8): 952-958 CrossRef (in Russ.).
  19. Safarpoor Dehkordi F., Gandomi H., Akhondzadeh Basti A., Misaghi A., Rahimi E. Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food. Antimicrob. Resist. Infect. Control., 2017, 6(1): 104 CrossRef
  20. Safarpoor Dehkordi F., Basti A.A., Gandomi H., Misaghi A., Rahimi E. Pathogenic Staphylococcus aureus in hospital food samples; prevalence and antimicrobial resistance properties. Journal of Food Safety, 2018, 38(6): e12501 CrossRef (Retracted)
  21. Momtaz H., Safarpoor Dehkordi F., Rahimi E., Asgarifar A., Momeni M. Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province, Iran. Journal of Applied Poultry Research, 2013, 22(4): 913-921 CrossRef
  22. Hasanpour Dehkordi A., Khaji L., Sakhaei Shahreza M.N., Mashak Z., Safarpoor Dehkordi F., Safaee Y., Hosseinzadeh A., Alavi I., Ghasemi E., Rabiei-Faradonbeh M. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus recovered from raw meat. Tropical Biomedicine, 2017, 34(2): 396-404.
  23. Albano M., Karau M.J., Greenwood-Quaintance K.E., Osmon D.R., Oravec C.P., Berry D.J., Abdel M.P., Patel R. In vitro activity of rifampin, rifabutin, rifapentine, and rifaximin against planktonic and biofilm states of staphylococci isolated from periprosthetic joint infection. Antimicrobial Agents and Chemotherapy, 2019, 63(11): e00959-19 CrossRef
  24. Chambers H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis., 2001, 7(2): 178-182 CrossRef
  25. Lowy F.D. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation, 2003, 111(9): 1265-1273 CrossRef
  26. Torimiro N., Moshood A.A., Eyiolawi S.A. Analysis of beta-lactamase production and antibiotics resistance in Staphylococcus aureus strains. Journal of Infectious Diseases and Immunity, 2013, 5(3): 24-28 CrossRef
  27. Chandrakanth R.K., Raju S., Patil S.A. Aminoglycoside-resistance mechanisms in multidrug-resistant Staphylococcus aureus clinical isolates. Current Microbiology, 2008, 56(6): 558-562 CrossRef
  28. Ubukata K., Yamashita N., Gotoh A., Konno M. Purification and characterization of aminoglycoside-modifying enzymes from Staphylococcus aureus and Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 1984, 25(6): 754-759 CrossRef
  29. Hosseini S.A.A.M., Khoramrooz S.S., Marashifard M., Parhizgari N., Mansouri F. Frequency of the genes encoding aminoglycoside modifying enzymes in Staphylococcus aureus isolated from hospitalized burn patients. Journal of Mazandaran University of Medical Sciences, 2016, 25(134): 147-157.
  30. Rouch D.A., Byrne M.E., Kong Y.C., Skurray R.A. The aacA-aphD gentamycin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. Journal of General Microbiology, 1987, 133(11): 3039-3052 CrossRef
  31. Hancock R.E.W. Aminoglycoside uptake and mode of action — with special reference to streptomycin and gentamicin. I. Antagonists and mutants. Journal of Antimicrobial Chemotherapy, 1981, 8(4): 249-276 CrossRef
  32. Turutoglu H., Hasoksuz M., Ozturk D., Yildirim M., Sagnak S. Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Veterinary Research Communications, 2009, 33(8): 945-956 CrossRef
  33. Wang Z., Han R., Liu Y., Du Q., Liu J., Ma C., Li H., He Q., Yan Y. Direct detection of erythromycin-resistant Bordetella pertussis in clinical specimens by PCR. Journal of Clinical Microbiology, 2015, 53(11): 3418-3422 CrossRef
  34. Li Y., Liu X., Zhang B., He Q., Wang Z. Where macrolide resistance is prevalent. APMIS, 2015, 123(4): 361-363 CrossRef
  35. Performance Standards for Antimicrobial Susceptibility Tests; Approved Standard — Twelfth Edition. CLSI Supplement M02-A12. Clinical and Laboratory Standards Institute, USA, 2015.
  36. Opredelenie chuvstvitel'nosti mikroorganizmov k antibakterial'nym preparatam. MUK 4.2.1890-04 [Determination of the sensitivity of microorganisms to antibacterial drugs. MUK 4.2.1890-04]. Moscow, 2004 (in Russ.).
  37. Shurduba N.A., Sotnikova V.M., Osipova I.S. RZh «Problemy veterinarnoi sanitarii, gigieny i ekologii», 2013, 2(10): 56-57 (in Russ.).
  38. Nikulin D.M. Nivy Zaural'ya, 2015, 6: 74-77 (in Russ.).
  39. Klibi A., Maaroufi A., Torres C., Jouini A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. International Journal of Antimicrobial Agents, 2018, 52(6): 930-935 CrossRef
  40. Haran P., Godden S.M., Boxrud D., Jawahir S., Bender J.B., Sreevatsan S. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. Journal of Clinical Microbiology, 2012, 50(3): 688-695 CrossRef
  41. Hamiroune M., Berber A., Boubekeur S. Contribution à l’étude de la contamination du lait bovin par les staphylocoques dans certaines fermes de la région d’Alger et son impact sur la santé humaine. Revue scientifique et technique (International Office of Epizootics), 2014, 33(3): 1027-1034.
  42. Peles F., Wagner M., Varga L., Hein I., Rieck P., Gutser K., Keresztúri P., Kardos G., Turcsányi I., Béri B., Szabó A. Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology, 2007, 118(2): 186-193 CrossRef
  43. Srednik M.E., Usongo V., Lépine S., Janvier X., Archambault M., Gentilini E.R. Characterisation of Staphylococcus aureus strains isolated from mastitis bovine milk in Argentina. Journal of Dairy Research, 2018, 85(1): 57-63 CrossRef
  44. Bidya S., Suman R.S.  Comparative study of three β lactamase test methods in Staphylococcus aureus isolated from two Nepalese hospitals. Open Journal of Clinical Diagnostics, 2014, 4: 47-52 CrossRef
  45. Shi D., Hao Y., Zhang A., Wulan B., Fan X. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in China. Transboundary and Emerging Diseases, 2010, 57(4): 221-224 CrossRef
  46. Aarestrup F.M., Jensen N.E. Development of penicillin resistance among Staphylococcus aureus isolated from bovine mastitis in Denmark and other countries. Microbial Drug Resistance, 1998, 4(3): 247-256 CrossRef
  47. Nunes S.F., Bexiga R., Cavaco L.M., Vilela C.L. Technical note: antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis. Journal of Dairy Science, 2007, 90(7): 3242-3246 CrossRef
  48. Kaase M., Lenga S., Friedrich S., Szabados F., Sakinç T., Kleine B., Gatermann S.G. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clinical Microbiology and Infection, 2008, 14(6): 614-616 CrossRef
  49. The European Committee on Antimicrobial Susceptibility Testing. Routine and extended internal quality control as recommended by EUCAST. Version 8.0, 2018. Rezhim dostupa http://www.eu-cast.org/ast_of_bacteria/previous_versions_of_documents/. Available 18.12.2019.
  50. Farahani A., Mohajeri P., Gholamine B., Rezaei M., Abbasi H. Comparison of different phenotypic and genotypic methods for the detection of methicillin-resistant Staphylococcus aureus. North American Journal of Medical Sciences, 2013, 5(11): 637-640 CrossRef
  51. Pitkälä A., Haveri M., Pyörälä S., Myllys V., Honkanen-Buzalski T. Bovine mastitis in Finland 2001 — prevalence, distribution of bacteria, and antimicrobial resistance. Journal of Dairy Science, 2004, 87(8): 2433-2441 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)