doi: 10.15389/agrobiology.2018.6.1107eng

UDC 636.32/.38:575.1:636.082

 

GENETIC MARKERS OF MEAT PRODUCTIVITY OF SHEEP
(Ovis aries L.). I. MYOSTATIN, CALPAIN, CALPASTATIN (review)

V.I. Trukhachev1, M.I. Selionova2, A.Yu. Krivoruchko1,
A.M.M. Aibasov2

1Stavropol State Agrarian University, 12, Zootechnicheskii per., Stavropol, 355017 Russia, e-mail rector@stgau.ru, rcvm@yandex.ru;
2All-Russian Research Institute of sheep and goat breeding – branch of the North Caucasus federal agricultural Research Center, 15, Zootechnicheskii per., Stavropol, 355017 Russia, e-mail m_selin@mail.ru (✉ corresponding author), velikii-1@yandex.ru

ORCID:
Trukhachev V.I. orcid.org/0000-0003-4676-5407
Krivoruchko A.Yu. orcid.org/0000-0003-0130-3639
Selionova M.I. orcid.org/0000-0002-9501-8080
Aibasov A.M.M. orcid.org/0000-0002-3704-3210
The authors declare no conflict of interests

Received June 25, 2017

 

The study of genetic and biochemical bases of phenotypic polymorphism that determine meat productivity of agricultural animals is relevant for animal breeding. Breeders of USA, Europe and Australia use genes associated with quantitative and qualitative traits of meat cattle, such as CAPN and CAST (calpactin and calpain cascade), MSTN (myostatin), GDF5 (growth differentiating factor), TG5 (thyreoglobulin), LEP (leptin), FABP4 (protein binding fatty acids) in selection programs (A.V. Eenennaam, 2006; Y.F. Liu et al., 2010; U. Singha et al., 2014; A. Cieploch et al., 2017). The main trend in the development of sheep breeding in recent decades throughout the world is a steady growth in mutton production, which determines an increase in the proportion of specialized meat breeds and increasingly growing requirements to parameters of meat productivity of meat sheep and meat wool sheep (A.M. Holmanov et al., 2015; M.I. Selionova, 2015). In this regard, search for candidate genes associated with these parameters is given more atttantion (D.W. Pethick et al., 2014). The presented review summarizes data on several factors which affect meat productivity in shhep. First, myostatin biological activity, gene structure and effect on the indices of sheep meat productivity are under consideration. Myostatin gene located on chromosome 2 and includes three exons and two introns is highly polymorphic (J.G. Hickford et al., 2010; M.R. Ansary, 2011; H. Han et al., 2013). Its mutations g+6723G>A and g+2449G>C have positive effects on the development of muscles and lead to a significant increase in meat with a decrease in fat content in the carcass (A. Clop et al., 2006; P.L. Johnson et al., 2009; I.A. Boman et al., 2010; A.Y. Masri et al., 2011; M. Hope et al., 2013; J. Wang et al., 2016). Another factor determining meat productivity in sheep is a proteolytic calpain-calpastatin system (CCS) (D.E. Goll et al., 2003; H.Y Chung, 2003). Calpastatin gene is located on chromosome 5 and includes 4 exons and 3 introns (B.R. Palmer, 1998). Calpain and calpastatin genes are presented by a variety of alleles, which differ in the frequency in different breeds (F.E. Shahroudi et al., 2006; S.O. Byun et al., 2009; M.A. Azari et al., 2012; G. Shahabodin et al., 2012; R.R. Arora et al., 2014; N. Shahram et al., 2014; N.S. Kumar et al., 2015). There is a relationship between point mutations in CAPN gene and fatty hips, kidneys, heart and a significant association of these mutations with lower fat deposition in the carcass. Intensity of growth rate in sheep young is primarily due to a greater increase in muscular weight which also correlates with CAST gene (M.R. Nassiry et al., 2006; A. Mahdavi Mamaghani et al., 2008; M. Tahmoorespur et al., 2012; Q. Fang et al., 2013). These results testify to expedience for myostatin, calpain and ñalpastatin genes typing in breeding genotypes with higher meat productivity.

Keywords: Ovis aries L., sheep, meat productivity, myostatin, MSTN, calpain, ÑÀÐN, calpastatin, ÑÀSÒ, genetic polymorphism, SNP, genome editing.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Zinov'eva N.A., Kostyunina O.V., Gladyr' E.A., Bannikova A.D., Kharzinova V.R., Larionova P.V., Shavyrina K.M., Ernst L.K. Zootekhniya, 2013, 9: 5-7 (in Russ)
  2. VanRaden P.M., Sullivan P.G. International genomic evaluation methods for dairy cattle. Genet. Sel. Evol., 2010, 42: 7 CrossRef
  3. Eenennaam A.V. Marker-assisted selection in beef cattle. University of California department of animal science. 2006. Available https://www.agrireseau.net/bovinsboucherie/documents/
    Marker_Assisted_Selection_in_Beef_Cattle.pdf. Accessed January 16, 2017.
  4. Liu Y.F., Zan L.S., Li K., Zhao S.P., Xin Y.P., Lin Q., Tian W.Q., Wang Z.W. A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep., 2010, 37(1): 429-434 CrossRef
  5. Singha U., Deba R., Alyethodia R.R., Alexa R., Kumara S., Chakrabortyb S., Dhamac K., Sharmaa A. Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine, 2014, 6(2): 49-58 CrossRef
  6. Bellinge R.H., Liberles D.A., Iaschi S.P., O'brien P.A., Tay G.K. Myostatin and its implications on animal breeding: a review. Anim. Genet., 2005, 36(1): 1-6 CrossRef
  7. Selionova M.I. Informatsionnyi byulleten' Natsional'nogo soyuza ovtsevodov, 2015, 2(10): 47-53 (in Russ.)
  8. Kholmanov A.M., Dankvert S.A., Osadchaya O.Yu. Ovtsy, kozy, sherstyanoe delo, 2015, 4: 15-20 (in Russ.)
  9. Mortimer S.I., Werf J.H.J., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Edwards J.E.H., Ponnampalam E.N., Ball A.J., Gilmour A.R., Pethick D.W. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci., 2014, 96(2): 1016-1024 CrossRef
  10. McRae A.F., Bishop S.C., Walling G.A., Wilson A.D., Visscher P.M. Mapping of multiple quantitative trait loci for growth and carcass traits in a complex commercial sheep pedigree. Anim. Sci., 2005, 80(2): 135-141 CrossRef
  11. Builov S.V., Erokhin A.I., Semenov S.I., Ul'yanov A.N., Khamitsaev R.S. Razvedenie polutonkorunnykh myasosherstnykh ovets [Breeding of half-fine wool meat sheep]. Moscow, 1981 (in Russ.).  
  12. Yan J.X., Harry R.A., Wait R., Welson S.Y., Emery P.W., Preedy V.R., Dunn M.J. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2001, 1(3): 424-434 CrossRef
  13. MacIntosch B.R., Gardiner P.F., McComas A.J. Skeletal muscle. Form and function. Human Kinetics, Champaign, 2006.
  14. Byrne K., Vuocolo T., Gondro, C., White J.D., Cockett N.E., Hadfield T., Bidwell C.A., Waddell J.N., Tellam R.L. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development. BMC Genomics, 2010, 11: 378 CrossRef
  15. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibe B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzu, C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 2006, 38: 813-818 CrossRef
  16. Zhang C., Liu Y., Xu D., Wen Q., Li X., Zhang W., Yang L. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep., 2012, 39(3): 3081-3087 CrossRef
  17. Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dunner S., Menissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double muscled phenotype in cattle. Nat. Genet., 1997, 17: 71-74 CrossRef
  18. McPherron A.C., Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. PNAS USA, 1997, 94(23): 12457-12461 CrossRef
  19. Stinckens A., Georges M., Buys N. Mutations in the myostatin gene leading to hyper muscularity in mammals: indications for a similar mechanism in fish? Anim. Genet., 2011, 42(3): 229-234 CrossRef
  20. Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Ostrander E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet., 2007, 3(5): e79 CrossRef
  21. Miar Y., Salehi A., Kolbehdari D., Aleyasin S.A. Application of myostatin in sheep breeding programs: a review. Molecular Biology Research Communications, 2014, 3(1): 33-43.
  22. Mirhoseini S., Zare J. The role of myostatin on growth and carcass traits and its application in animal breeding. Life Sci. J., 2012, 9: 2353-2357.
  23. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387: 83-90 CrossRef
  24. Kambadur R., Sharma M., Smith T.P.L, Bass J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue Cattle. Genome Res., 1997, 7: 910-915 CrossRef
  25. Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L., Falaschini A. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. Journal of Biomedicine and Biotechnology, 2010, 2010: Article ID 542945 CrossRef
  26. Gong Y.F., Li X.L., Liu Z.Z., Jin X.M., Zhou R.Y., Li L.H., Zhang Q. SNP detection and haplotype analysis in partial sequence of MSTN gene in sheep. Russian Journal of Genetics, 2009, 45: 1454 CrossRef
  27. Han J.R.H., Forrest J.G., Hickford H. Genetic variations in the myostatin gene (MSTN) in New Zealand sheep breeds. Mol. Biol. Rep., 2013, 40(11): 6379-6384 CrossRef
  28. Trukhachev V.I., Krivoruchko A.Yu., Skripkin V.S., Yatsyk O.A. Vestnik APK Stavropol'ya, 2016, 2(22): 58-65 (in Russ.).
  29. Hickford J.G., Forrest R.H, Zhou H., Fang Q., Han J., Frampton C.M., Horrell A.L. Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Genet., 2010, 41(1): 64-72 CrossRef
  30. Sahu A.R., Jeichitra V., Rajendran R., Raja A. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds. Small Ruminant Research, 2017, 149: 81-84 CrossRef
  31. Trukhachev V., Belyaev V., Kvochko A., Kulichenko A., Kovalev D., Pisarenko S., Volynkina A., Selionova M., Aybazov M., Shumaenko S., Omarov A., Mamontova T., Golovanova N., Yatsyk O., Krivoruchko A. Myostatin gene (MSTN) polymorphism with a negative effect on meat productivity in Dzhalginsky Merino sheep breed. Journal of BioScience and Biotechnology, 2015, 4(2): 191-199.
  32. Lee S.J., McPherron A.C. Regulation of myostatin activity and muscle growth. PNAS USA, 2001, 98(16): 9306-9311 CrossRef
  33. Casas E., Shackelford S.D., Keele J.W., Stone R.T., Kappes S.M., Koohmaraie M. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci., 2000, 78(3): 560-569.
  34. Jeanplong F., Sharma M., Somers W.G., Bass J.J., Kambadur R. Genomic organization and neonatal expression of the bovine myostatin gene. Mol. Cell. Biochem., 2001, 220(1-2): 31-37 CrossRef
  35. Shishkin S.S. Uspekhi biologicheskoi khimii, 2004, 44: 209-262 (in Russ.)
  36. Kijas J.W., McCulloch R., Edwards J.E.H., Oddy V.H., Lee S.H., Van der Werf J. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus. BMC Genetics, 2007, 8: 80 CrossRef
  37. Tellam R.L., Noelle E., Cockett N.E., Vuocolo T., Bidwell C.A. Genes contributing to genetic variation of muscling in sheep. Frontiers in Genetics, 2012, 3: 164 CrossRef
  38. Johnston SE., Beraldi D., McRae A.F., Pemberton J.M., Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity, 2010, 104: 196-205 CrossRef
  39. Hennebry A., Berry C., Siriett V., O’Callaghan P., Chau L., Watson T., Sharma M., Kambadur R. Myostatin regulates fiber type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am. J. Physiol.-Cell Ph., 2009, 296(3): C525-C534 CrossRef
  40. Liu C., Li W., Zhang X., Zhang N., He S., Huang J., Ge Y., Liu M. Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell. Dev.-An., 2014, 50(2): 94-102 CrossRef
  41. Hu S., Ni W., Sai W., Zi H., Qiao J., Wang P., Sheng J., Chen C. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS ONE, 2013, 8(3): e58521 CrossRef
  42. Zhao X., Ni W., Chen C., Sai W., Qiao J., Sheng J., Zhang H., Li G., Wang D., Hu S. Targeted editing of myostatin gene in sheep by transcription activator-like effector nucleases. Asian-Australas. J. Anim., 2016, 29(3): 413-418 CrossRef
  43. Carlson D.F., Tan W., Lillico S.G., Stverakova D., Proudfoot C., Christian M., Voytas D.F., Long C.R., Whitelaw C.B.A., Fahrenkrug S.C. Efficient TALEN-mediated gene knockout in livestock. PNAS, 2012, 109: 17382-17387 CrossRef
  44. Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C. Bruce A., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Res., 2015, 24(1): 147-153 CrossRef
  45. Crispo M., Mulet A., Tesson L., Barrera N., Cuadro F., Santos-Neto P., Nguyen T., Crénéguy A., Brusselle L., Anegón I., Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 2015, 10(8): e0136690 CrossRef
  46. Sawatari E., Seki R., Adachi T., Hashimoto H.U.S., Wakamatsu Y., Nakata T., Kinoshita M. Overexpression of the dominant-negative form of myostatin results in doubling of muscle fiber number in transgenic medaka (Oryzias latipes). Comp. Biochem. Phys. A, 2010, 155(2): 183-189 CrossRef
  47. Lee C.Y., Hu S.Y., Gong H.Y., Chen M.H.C., Lu J.K., Wu J.L. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Bioph. Res. Co., 2009, 387(4): 766-771 CrossRef
  48. Lee S.J. Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS ONE, 2007, 2: e789 CrossRef
  49. Haidet A., Rizo L., Handy C., Umapathi P., Eagle A., Shilling C., Boue D., Martin P., Sahenk Z., Mendell J., Kaspar B. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. PNAS USA, 2008, 105(11): 4318-4322 CrossRef
  50. Lee S.J., McPherron A.C. Regulation of myostatin activity and muscle growth. PNAS USA, 2001, 98(16): 9306-9311 CrossRef
  51. Nishi M., Yasue A., Nishimatu S., Nohno T., Yamaoka T., Itakura M., Moriyama K., Ohuchi H., Noji S. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem. Bioph. Res. Co., 2002, 293(1): 247-251 CrossRef
  52. Johnson P.L., Dodds K.G., Bain W.E., Greer G.J., McLean N.J., McLaren R.J., Galloway S.M., Stijn T.C., McEwan J.C. Investigations into the GDF8 g+6723G-A polymorphism in New Zealand Texel sheep. J. Anim. Sci., 2009, 87: 1856-1864 CrossRef
  53. Masri A.Y., Lambe N.R., Macfarlane J.M., Brotherstone S., Haresign W., Bunger L. Evaluating the effects of the c.*1232G>A mutation and TM-QTL in Texel × Welsh Mountain lambs using ultrasound and video image analyses. Small Rumin. Res., 2011, 99(2-3): 99-109 CrossRef
  54. Masri A.Y., Lamb N.R., Macfarlan J.M., Brotherston S., Haresi W., Bunge L. Evaluating the effects of a single copy of a mutation in the myostatin gene (c.*1232G>A) on carcass traits in crossbred lambs. Meat Sci., 2011, 87(4): 412-418 CrossRef
  55. Hadjipavlou G., Matika O., Clop A., Bishop S.C. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet., 2008, 39(4): 346-353 CrossRef
  56. Hope M., Haynes F., Oddy H., Koohmaraie M., Al-Owaimer A., Geesink G. The effects of the myostatin g+6723G>A mutation on carcass and meat quality of lamb. Meat Sci., 2013, 95(1): 118-122 CrossRef
  57. Wang J., Zhou H., Hu J., Li S., Luo Y., Hickford J.G. Two single nucleotide polymorphisms in the promoter of the ovine myostatin gene (MSTN) and their effect on growth and carcass muscle traits in New Zealand Romney sheep. J. Anim. Breed. Genet., 2016, 133(3): 219-226 CrossRef
  58. Boman I.A., Klemetsdal G., Nafstad O., Blichfeldt T., Vage D.I. Impact of two myostatin (MSTN) mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries). Genet. Sel. Evol., 2010, 42: 4 CrossRef
  59. Farhadian M., Hashemi A. Molecular characterization and phylogeny based analysis of intron i sequence of myostatin (MSTN) gene in Iranian Makuei sheep breed. Ann. Anim. Sci., 2016, 16(4): 1007-1018 CrossRef
  60. Ansary M., Tahmoorespur M., Nassiry M., Taheri A., Valeh M. Polymorphism in intron-1 of myostatin gene and its association with estimated breeding values of growth traits in Baluchi sheep. Indian J. Anim. Sci., 2011, 81(8): 849-852.
  61. Bouyer C., Forestier L., Renand G., Oulmouden A. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE, 2014, 9(5): e97399 CrossRef
  62. Cieploch A., Rutkowska K., Oprzadek J., Polawska E. Genetic disorders in beef cattle: a review. Genes Genom., 2017, 39(5): 461-471 CrossRef
  63. Palmer B.R., Morton J.D., Roberts N., Ilian M.A., Bickerstaffe R. Marker-assisted selection for meat quality and the ovine calpastatin gene. Proc. New Zeal. Soc. An., 1999, 59: 266-268.
  64. Sensky P.L., Parr T., Bardsley R.G., Buttery P.J. Postmortem proteolysis in muscle and meat quality and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, variable activity of the calpain proteolytic system. Meat and Livestock Commission, Loughborough, UK, 2000.
  65. Koohmaraie M. The role of Ca2+-dependent proteases (calpain) in post-mortem proteolysis and meat tenderness. Biochimie, 1992, 74(3): 239-245 CrossRef
  66. Ma H., Yang H.Q., Takano E., Hatanaka M., Maki M. Amino terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interaction with calmodualin-like domain of the proteinase. J. Biol. Chem., 1994, 269(39): 24430-24436.
  67. Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiol. Rev., 2003, 83(3): 731-801 CrossRef
  68. Pomponio L., Ertbjerg P. The effect of temperature on the activity of μ- and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Sci., 2012, 91(1): 50-55 CrossRef
  69. Kumar N.S., Jayashankar M.R., Ramakrishnappa N., Nagaraja C.S., Fairoze N., Satyanarayana K. Genetic polymorphism of ovine calpain gene in bandur sheep. International Journal of Science, Environment and Technology, 2015, 4(3): 804-812.
  70. Chung H.Y., Davis M.E., Hines H.C. A DNA polymorphism of the bovine calpastatin gene detected by SSCP analysis. Anim. Genet., 1999, 30(1): 80-81 CrossRef
  71. Azari M.A., Dehnavi E., Yousefi S., Shahmohamdi L. Polymorphism of Calpastatin, Calpain and myostatin genes in native Dalagh sheep in Iran. Slovak Journal of Animal Science, 2012, 45(1): 1-6.
  72. Shahroudi F.E., Nassiry M.R., Valizadh R., Moussavi A.H., Tahmoorespour M., Ghiasi H. Genetic polymorphism at MTNR1A, CAST and CAPN loci in Iranian Karakul sheep. Iranian Journal of Biotechnology, 2006, 4(2): 117-122.
  73. Nassiry M.R., Shahroudi F.E., Tahmoorespour M., Javadmanesh A. Genetic variability and population structure in beta-lactoglobulin, calpastatin and calpain loci in Iranian Kurdi sheep. Pakistan Journal of Biological Sciences, 2007, 10(7): 1062-1067 CrossRef
  74. Arora R.R., Yadav H.S., Yadav D.K. Identification of novel single nucleotide polymorphisms in candidate genes for mutton quality in Indian sheep. Animal Molecular Breeding, 2014, 4(1): 1-5 CrossRef
  75. Lonergan S.M., Ernst C.W., Bishop M.D., Calkins C.R., Koohmaraie M. Relationship of restriction fragment length polymorphisms (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. J. Anim. Sci., 1995, 73(12): 3608-3612 CrossRef
  76. Fang Q., Forrest R.H., Zhou H., Frampton C.M., Hickford J.G.H. Variation in exon 10 of the ovine calpain 3 gene (CAPN3) and its association with meat yield in New Zealand Romney sheep. Meat Sci., 2013, 94(3): 388-390 CrossRef
  77. Muto Y., Morton J., Palmer D. Investigation of biochemical changes of the ovine calpain 3 exon-10 polymorphism. Mol. Cell. Probe., 2015, 29(6): 382-388 CrossRef
  78. Palmer B.R., Roberts N., Hickford J.G.H., Staffe R. Rapid communication: PCR-RFLP of MspI and NcoI in the ovine calpastatin gene. J. Anim. Sci., 1998, 76(5): 1499-1500 CrossRef
  79. Aali M., Moradi-Shahrbabak M., Moradi-Shahrbabak H., Sadeghi M. Detecting novel SNPs and breed-specific haplotypes at calpastatin gene in Iranian fat- and thin-tailed sheep breeds and their effects on protein structure. Gene, 2014, 537(1): 132-139 CrossRef
  80. Shahram N., Goodarzi M. Polymorphism of candidate genes for meat production in Lori sheep. IERI Procedia, 2014, 8: 18-23 CrossRef
  81. Shahabodin G., Abbasi H.A., Irani M., Abdullahpour R., Mirhabibi S. Polymorphism investigation of calpastatin gene in Zel sheep population of Iran by PCR-RFLP method. Afr. J. Biotechnol., 2012, 11(13): 3211-3214 CrossRef
  82. Suleman M., Khan S.U., Riaz M.N., Yousaf M., Shah A., Ishaq R., Ghafoor A. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds. Afr. J. Biotechnol., 2012, 11(47): 10655-10660 CrossRef
  83. Zhou H., Hickford J.G., Gong H. Polymorphism of the ovine calpastatin gene. Mol. Cell. Probe., 2007, 21(3): 242-244 CrossRef
  84. Byun S.O., Zhou H., Hickford J.G.H. Haplotypic diversity within the ovine calpastatin (CAST) gene. Mol. Biotechnol., 2009, 41(2): 133-137 CrossRef
  85. Nassiry M.R., Tahmoorespour M., Javadmanesh A., Soltani M., Foroutani Far S. Calpastatin polymorphism and its association with daily gain in Kurdi sheep. Iran. J. Biotecnol., 2006, 4(3): 188-192.
  86. Mahdavi Mamaghani A., Shoja J., Pirani N., Elyasi Gh. Comparing polymorphism of calpastatin gene using PCR-SSCP method in Ghezel sheep and Sarabi Cows. Animal Science Research Journal, 2008, 19(1): 2-10.
  87. Tahmoorespur M., Ahmadi H. A neural network model to describe weight gain of sheep from genes polymorphism, birth weight and birth type. Livest. Sci., 2012, 148(3): 221-226 CrossRef
  88. Pethick D.W., Ball A.J., Banks R.G., Gardner G.E., Rowe J.B., Jacob R.H. Translating science into the next generation meat quality program for Australian lamb. Meat Sci., 2014, 96(2): 1013-1015 CrossRef

back