doi: 10.15389/agrobiology.2018.6.1142eng

UDC 636.22/.28:575.174.015.3

Acknowledgements:
Supported financially by FASO Russia (theme GZ No. 0600-2018-0014)

 

CHOLESTEROL DEFICIENCY MUTATION HCD DOES NOT IMPACT
MILK PRODUCTIVITY AND BLOOD LEVELS OF CHOLESTEROL AND
TRIGLYCERIDES IN RUSSIAN HOLSTEIN BLACK AND WHITE CATTLE

M.V. Pozovnikova1, T.E. Lihacheva2, A.A. Kudinov1, V.B. Lejbova1,
N.V. Dementeva1

1All-Russian Research Institute for Farm Animal Genetics and Breeding — branch of Ernst Federal Science Center for Animal Husbandry, 55А, Moskovskoe sh., St. Petersburg—Pushkin, 196625 Russia, e-mail marina.qpr@gmail.com (✉ corresponding author), kudinov_aa@list.ru, leib1406@yandex.ru, dementevan@mail.ru;
2Saint-Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail likhacheva.spb@gmail.com

ORCID:
Pozovnikova M.V. orcid.org/000-0002-8658-2026
Lejbova V.B. orcid.org/0000-0002-7017-9988
Lihacheva T.E orcid.org/0000-0001-8456-5911
Dementeva N.V. orcid.org/0000-0003-0210-9344
Kudinov A.A. orcid.org/0000-0002-7811-576X
The authors declare no conflict of interests

Received March 6, 2018

 

The spread of lethal and semi-lethal mutations in cattle populations results in embryonic and postembryonic mortality of calves. The use of a limited number of sires creates the danger of wide spread of genetic abnormalities. Genetic markers identify carriers of a mutation in the absence of information about phenotypic manifestations of the disease. Cholesterol deficiency mutation (HCD, haplotype cholesterol deficiency), a recessive defect of Holstein cattle, is characterized by the death of calves in the first days or months of life. The extent of this genetic defect worldwide is currently very high, 6 to 17 %. In general, there is little information about the relationship of recessive mutations with dairy cattle productivity, and data on the effect of the HCD mutation, first described in 2015, on breeding traits are extremely limited. This paper is the first to report data on a genetic study of the APOB gene region on the BTA11 chromosome and milk production indices depending on the HCD status in a Russian dairy cow population. The obtained results indicate that in the studied population the HCD mutation does not reduce the pedigree value of animals in terms of milk production and milk quality (for fat and protein). The study was performed in a breeding farm of the Leningrad region in 2017. Random sample of Holstein black and white cattle include cows (n = 451) born in 2009-2015 and the calves (n = 7) with clinical signs of diarrhea and proven HCD carriers in pedigree (sires, sires of sires). Genotyping of animals was carried out by PCR using allele specific primers. The productivity of lactation 1 and 2 (milk, yield of milk fat and protein) was studied depending on the genotypes according to HCD. The ANOVA variance analysis and calculation of means were carried out with RStudio program on the basis of a single-effect model. Estimated breeding value of milk, fat and protein yields in kg was calculated using BLUP Animal Model. The concentration of triglycerides and cholesterol was determined with an automatic biochemical analyzer RX Daytona (Randox Laboratories, UK). According to the results of the study, 35 cows (7.76 %) of those tested are the HCD carriers. Among the calves, one calf was defined as a carrier and one heifer with homozygous HCD genotype for APOB gene had all symptoms of the disease. It is established that the HCD+ cows are not inferior to their peers on milk productivity. The cows with the mutant allele of the APOB gene born in 2013 significantly exceeded healthy animals: during lactation 1 by 1219 kg (p ≤ 0.01) for milking, by 13.8 kg for milk fat yield, and by 19.9 kg for milk protein yield (p ≤ 0.05); during lactation 2 by 1392 kg (p ≤ 0.001) for milking, by 44 kg (p ≤ 0.05) for milk fat yield, and by 39.8 kg for milk protein yield (p ≤ 0.01). The average estimated breeding value (EBV) of HCD carriers is 6.8 % higher in milk yield, 8.1 % in fat and 4.8 % in protein compared to HCD- animals. Monitoring of progeny of HCD carriers using Illumina Bovine IBDv3 (50k) did not reveal significant haploblocks in the APOB gene region, therefore, selection for increased milk productivity would not lead to a significant increase in the incidence of HCD carriers. Comparative analysis of biochemical indices in the first half of the dry period did not reveal significant differences in the blood cholesterol (3.04±0.31 mmol/l and 3.33±0.12 mmol/l, respectively) and triglycerides (0.197±0.01 mmol/l, and 0.170±0.01 mmol/l) between groups of latent HCD carriers and cows free from this mutation. Our study has shown that the use of HCD carriers does not reduce productivity in the dairy herd. However, monitoring for this genetic defect is necessary, as incorrect selection of animals can lead to the birth of a sick and non-viable offspring, which in turn will cause economic losses in the farms.

Keywords: cattle, genotyping, HCD, haplotype cholesterol deficiency, lethal recessive mutation, apolipoproteine B, gene APOB,milk yielding, triglycerides, cholesterol.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Atlas geneticheskikh boleznei i priznakov produktivnosti krupnogo rogatogo skota /Pod redaktsiei A.A. Kudinova, K.V. Plemyashova, P.I. Ukolova, G.V. Shiryaeva [Atlas of genetic diseases and productivity traits of cattle. A.A. Kudinov, K.V. Plemyashov, PI Ukolov, G.V. Shiryaev (eds.)]. St. Peretsburg, 2017 (in Russ.).
  2. Charlier C., Coppieters W., Rollin F., Desmecht D., Agerholm J., Carta E., Dardano S., Dive M., Fasquelle C., Frennet J.-C., Hanset R., Hubin X., Jorgensen C., Karim L., Kent M., Harvey K., Pearce B.R., Simon P., Tama N., Nie H., Vandeputte S., Lien S., Longeri M., Fredholm M., Harvey R.J., Georges M. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat. Genet., 2008, 40(4): 449 CrossRef
  3. Zinov'eva N.A. Haplotypes affecting fertility in Holstein cattle. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(4): 423-435 CrossRef
  4. Dement'eva N.V., Mitrofanova O.V., Kudinov A.A. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta, 2015, 39: 136-143 (in Russ.).
  5. Dement'eva N.V., Mitrofanova O.V., Tyshchenko V.I., Nikitkina E.V., Terletskii V.P., Yakovlev A.F. Molochnoe i myasnoe skotovodstvo, 2014, 6: 7-9 (in Russ.).
  6. Yakovlev A.F., Terletskii V.P., Mitrofanova O.V., Dement'eva N.V. Molochnoe i myasnoe skotovodstvo, 2004, 6: 31-32 (in Russ.).
  7. Kipp S., Segelke D., Schierenbeck S., Reinhardt F., Reents R., Wurmser C., Pausch N., Fries R., Thaller G., Tetens J., Pott J., Haas D., Raddatz  B.B., Hewicker-Trautwein M., Proios I., Schmicke M., Grünberg W. Identification of a haplotype associated with cholesterol deficiency and increased juvenile mortality in Holstein cattle. J. Dairy Sci., 2016, 99(11): 8915-8931 CrossRef
  8. Jung S., Pausch H., Langenmayer M.C., Schwarzenbacher H., Majzoub-Altweck M., Gollnick N.S., Fries R. A nonsense mutation in PLD4 is associated with a zinc deficiency-like syndrome in Fleckvieh cattle. BMC Genomics, 2014, 15: 623 CrossRef
  9. Kipp S., Segelke D., Schierenbeck S., Reinhardt F., Reents R., Wurmser C., Pausch H., Fries R., Thaller G., Tetens J., Pott J., Piechotta M., Grünberg W. A new Holstein haplotype affecting calf survival. Interbull Bulletin, 2015, 49: 49-53.
  10. Menzi F., Besuchet-Schmutz N., Fragnière M., Hofstetter S., Jagannathan V., Mock T., Raemy A., Studer E., Mehinagic K., Regenscheit N., Meylan M., Schmitz-Hsu F., Drögemüller C. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle. Anim. Genet., 2016, 47(2): 253-257 CrossRef
  11. Schütz E., Wehrhahn C., Wanjek M., Bortfeld R., Wemheuer W.E., Beck J., Brenig B. The Holstein Friesian lethal haplotype 5 (HH5) results from a complete deletion of TBF1M and cholesterol deficiency (CDH) from an ERV-(LTR) insertion into the coding region of APOB. PLoS ONE, 2016, 11(4): e0154602 CrossRef
  12. Hebbachi A.M., Gibbons G.F. Microsomal membrane-associated apoB is the direct precursor of secreted VLDL in primary cultures of rat hepatocytes. J. Lipid Res., 2001, 42(10): 1609-1617.
  13. Marri R., Grenner D., Meies P., Roduell V. Biokhimiya cheloveka [Human biochemistry]. Moscow, 1993 (in Russ.).
  14. Li Y., Fang L., Liu L., Zhang S., Ma Z., Sun D. The cholesterol deficiency-associated mutation in APOB segregates at low frequency in Chinese Holstein cattle. Canadian Journal of Animal Science (in press, published on the web 16 October 2018) CrossRef
  15. Van Doormaal B., Beavers L. HCD: haplotype associated with cholesterol deficiency. Canadian Dairy Network (CDN), 2015. Available https://www.cdn.ca/images/uploaded/file/HCD%20Update%20Article%20-%20December%202015.pdf. Accessed January 31, 2018.
  16. Zinov'eva N.A., Kostyunina O.V., Volkova V.V., Ermilov A.N., Yanchukov I.N. Molochnoe i myasnoe skotovodstvo, 2016, 2: 5-8 (in Russ.).
  17. Cole J.B., Null D.J., VanRaden P.M. Phenotypic and genetic effects of recessive haplotypes on yield, longevity and fertility. J. Dairy Sci., 2016, 99: 7274-7288 CrossRef
  18. Terletskii V.P., Plemyashov K.V., Tyshchenko V.I., Dement'eva N.V. Ispol'zovanie sovremennykh molekulyarno-geneticheskikh metodov v genotipirovanii sel'skokhozyaistvennykh zhivotnykh [The use of modern molecular genetic methods in the genotyping of farm animals]. St. Petersburg—Pushkin, 2014 (in Russ.).
  19. Kaminski S., Rusc A. Cholesterol deficiency — new genetic defect transmitted to Polish Holstein-Friesian cattle. Pol. J. Vet. Sci., 2016, 19(4): 885-887 CrossRef
  20. Chang C.C., Chow C.C., Tellier L.C., Vattikuti S.S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4: 7 CrossRef
  21. Merkur'eva E.K. Biometriya v zhivotnovodstve [Biometrics in livestock]. Moscow, 1977 (in Russ.).
  22. RStudio Team. RStudio: integrated development for R. RStudio, Inc., Boston MA, 2015. Available http://www.rstudio.com. No date.
  23. Kudinov A.A., Juga J., Uimari P., Mantysaari E.A., Stranden I., Plemyashov K.V., Saksa E.I., Smaragdov M.G. Upgrading dairy cattle evaluation system in Russian Federation. Interbull Bulletin, 2017, 51: 67-74.
  24. Kondrakhin I.P., Arkhipov A.V., Levchenko V.I., Talanov G.A., Frolova L.A., Novikov V.E. Metody veterinarnoi klinicheskoi laboratornoi diagnostiki [Methods of veterinary clinical laboratory diagnostics]. Moscow, 2004 (in Russ.).
  25. Zinov'eva N.A., Strekozov N.I., Eskin G.V., Turbina I.S., Yanchukov I.N., Ermilov A.N. Zhivotnovodstvo Rossii, 2015, 6: 30 (in Russ.).
  26. Shanks R.D., Greiner M.M. Relationship between genetic merit of Holstein bulls and deficiency of uridine-5´-monophosphate synthase. J. Dairy Sci., 1992, 75(7): 2023-2029 CrossRef
  27. Saleem S., Heuer C., Sun C., Kendall D., Moreno J., Vishwanath R. The role of circulating low-density lipoprotein levels as a phenotypic marker for Holstein cholesterol deficiency in dairy cattle. J. Dairy Sci., 2016, 99(7): 5545-5550 CrossRef
  28. Pozovnikova M.V., Likhacheva T.E., Shiryaev G.V. Genetika i razvedenie zhivotnykh, 2018, 2: 61-66 (in Russ.).
  29. Gross J.J., Schwinn A.C., Schmitz-Hsu F., Menzi F., Drögemüller C., Albrecht C., Bruckmaier R.M. Rapid Communication: Cholesterol deficiency-associated APOB mutation impacts lipid metabolism in Holstein calves and breeding bulls. J. Anim. Sci., 2016, 94(4): 1761-1766 CrossRef
  30. Mock T., Mehinagic K., Menzi F., Studer E., Oevermann A., Stoffel M. H., Drögemüller S., Meylan M., Regenscheit N. Clinicopathological phenotype of autosomal recessive cholesterol deficiency in Holstein cattle. J. Vet. Intern. Med., 2016, 30(4): 1369-1375 CrossRef
  31. Inokuma H., Horiuchi N., Watanabe K.I., Kobayashi Y. Retrospective study of clinical and laboratory findings of autosomal recessive cholesterol deficiency in Holstein calves in Japan. Jpn. J. Vet. Res., 2017, 65(2): 107-112 CrossRef
  32. Plemyashov K.V., Saksa E.I., Barsukova O.E. Genetika i razvedenie zhivotnykh, 2016, 1: 8-16 (in Russ.).
  33. Saksa E.I., Barsukova O.E. Rezul'taty ispol'zovaniya i genealogicheskie skhemy bykov-proizvoditelei golshtinskoi porody [Results of use and genealogy of Holstein sires]. St. Petersburg, 2012 (in Russ.).

back