UDC 636.4:619:616.98:578:612.017.11/.12

doi: 10.15389/agrobiology.2015.6.709eng

HUMORAL AND CELL IMMUNE MECHANISMS UNDER
AFRICAN SWINE FEVER (review)

A.D. Sereda, A.S. Kazakova, A.R. Imatdinov, D.V. Kolbasov

All-Russian Institute of Veterinary Virology and Microbiology, Russian Academy of Agricultural Sciences,
Pokrov, Petushinskii Region, Vladimir Province, 601120 Russia,
e-mail sereda-56@mail.ru

Received July 28, 2015

The evidences for protective immunity against African swine fever are symptomless infection in local populations of Phacochoerus africanus, Potamochoerus porcus, Hylochoerus spp. In Africa and experimentally produced avirulent strains of African swine fever virus (ASFV), preventing death in pigs inoculated with its virulent homolog. Serum or colostrum from convalescent animals can delay clinical symptoms, decline viremia and increase the survivors’ rate (R.C. Knudsen et al., 1987; D.H. Schlafer et al., 1984; D.V. Onisk et al., 1994). Humoral immune response is most probably due not to ASFV neutralization but the complement-mediated cytolysis (CMC) and antibody-mediated cell cytotoxicity (AMCC) (V.V. Makarov, 2013). Cell-mediated defense mechanisms, lyses of infected cells by N-killers and cytotoxic T-lymphocytes (CTL) lead to chronic or symptomless infection (S.G. Norley et al., 1983, 1984). An in vivo depletion of CD8+ T-lymphocytes by monoclonal antibodies was shown to stop protective immunity in pigs pre-immunized with an attenuated ASFV strain under next inoculation with the virulent homolog (C.A.L. Oura et al., 2005). Induction and defector activity of AMCC and CTL depend on the dose and biological features of ASFV strain (A.D. Sereda, 2010). High AMCC since day 3 and activity of cell-mediated mechanisms of immunity on day 6 after the ASFV inoculation provide a rapid decrease of the virus titers in blood, and, consequently, the absence of clinical symptoms (A.D. Sereda et al., 1992). Humoral and cell-dependent defense mechanisms act synergistically that must be taken into consideration when developing candidate recombinant vaccine against ASFV. ASFV candidate proteins involved in antigenic properties which can induce protective mechanisms against ASF are nominated. In pigs immunization with р54 and р30-32 combination caused a delay in appearance of ASF clinical symptoms after the inoculation with virulent isolate (P. Gómez-Puertas et al., 1998). CD2v (or GP 110-140) is a membrane protein of ASFV determining hemadsorption and identified as a serotype specific one (J.M. Rodriguez et al., 1993; A.D. Sereda et al., 1992; A. Malogolovkin et al., 2014). Therefore it should be considered crucial when constructing experimental protective facilities (H.H. Takamatsu et al., 2013). Thus, the investigations conducted to date show both humoral and cell effector mechanisms to be involved in defense against ASF.

Keywords: African swine fever, protective immunity, antibodies, cytotoxic T-lympho-cytes, N-killers.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Malmquist W.A. Serologic and immunologic studies with African swine fever virus. Am. J.  Vet. Res., 1963, 24: 450-459.
  2. Ruiz-Gonzalvo F., Carnero M.E., Bruyel V. Immunological responses of pigs to partially attenuated African swine fever virus and their resistance to virulent homologous and heterologous viruses. Proc. of EUR 8466 EN: CEC/FAO «African swine fever». P.J. Wilkinson (ed.). Sardinia, 1983: 2066-2216. 
  3. King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K., Takamatsu H.H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunization. Vaccine, 2011, 29: 4593-4600 CrossRef
  4. Mutowembwa1 P., Souto R., van Heerden J.H. Vaccination of domestic pigs with a naturally attenuated strain of African swine fever virus. Proc. of the 9th Annual Congress of the Southern African Society for Veterinary Epidemiology and Preventive Medicine (18-20 August 2010). Farm Inn, Republic of South Africa, 2010: 126-128.
  5. Sereda A.D., Balyshev V.M. Voprosy virusologii, 2011, 4: 38-42.
  6. Malogolovkin A., Burmakina G., Titov I., Sereda A., Gogin A., Baryshnikova E., Kolbasov D. Comparative analysis of African swine fever virus genotypes and serogroups. Emerging Infectious Diseases, 2015, 21(2): 312-315 CrossRef
  7. Kolbasov D.V., Balyshev V.M., Sereda A.D. Veterinariya, 2014, 8: 3-8.
  8. Knudsen R.C., Genovesi E.V., Whyard T.C. In vitro immune serum-mediated protection of pig monocytes against African swine fever virus. Am. J. Vet. Res., 1987, 48: 1067-1071.
  9. Schlafer D.H., McVicar J.W., Mebus C.A. African swine fever convalescent sows: Subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. Am. J. Vet. Res., 1984, 45: 1361-1366.
  10. Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 CrossRef
  11. Parker J., Plowright W. Plaque formation by African swine fever virus. Nature, 1968, 219(5153): 524-525 CrossRef
  12. Hess W.R. African swine fever: a reassessment. Adv. Vet. Sci. Compar. Med., 1981, 25: 39-69.
  13. Viñuela E. African swine fever virus. Curr. Top. Microbiol. Immunology, 1985, 116: 151-170.
  14. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Res., 2013, 173: 101-109 CrossRef
  15. Zsak L., Onisk D.V., Afonso C.L., Rock D.L. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognising a 72-kDa viral protein. Virology, 1993, 196: 596-602 CrossRef
  16. Gómez-Puertas P., Rodriguez F., Oviedo J.M., Ramiro-Ibanez F., Ruiz-Gonzalvo F., Alonso C., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J. Virol., 1996, 70(8): 5689-5694.
  17. Afonso C.L., Alcaraz C., Brun A., Sussman M.D., Onisk D.V., Escribano J.M., Rock D.L. Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus. Virology, 1992, 189(1): 368-373 CrossRef
  18. Alcaraz C., Rodriguez F., Oviedo J.M., Eiras A., De Diego M.,  Alonso C., Escribano J.M. Highly specific confirmatory western blot test for African swine fever virus antibody detection using the recombinant virus protein p54. J. Virol. Meth., 1995, 52(1-2): 111-119 CrossRef
  19. Rodriguez F., Ley V., Gomez-Puertas P., Garcia R., Rodriguez J.F., Escribano J.M. The structural protein p54 is essential for African swine fever virus viability. Virus Res., 1996, 40(2): 161-167 CrossRef
  20. Gómez-Puertas P., Rodriguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998, 243(2): 461-471.
  21. Barderas M.G., Rodriguez F., Gomez-Puertas P., Aviles M., Beitia F., Alonso C., Escribano J.M. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Arch. Virol., 2001, 146: 1681-1691 CrossRef
  22. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 2004, 319: 337-342 CrossRef
  23. Makarov V.V., Malakhova M.S., Vlasov N.A. Doklady VASKHNIL, 1991, 12: 27-31.
  24. Makarov V.V. Veterinarnaya praktika, 2013, 3(62): 7-22.
  25. Norley S.G., Wardley R.C. Complement-mediated lysis of African swine fever virus-infected cells. Immunology, 1982, 46: 75-81.
  26. Norley S.G., Wardley R.C. Effector mechanisms in the pig. Antibody-dependent cellular cytolysis of African swine fever virus infected cells. Res. Vet.Sci., 1983, 35: 75-79.
  27. Sereda A.D., Solovkin S.L., Fugina L.G., Makarov V.V. Voprosy virusologii, 1992, 3: 168-170.
  28. Shubina N.G., Kolontsov A.A., Peskovatskov A.A., Ustin A.V., Makarov V.V. Doklady RASKHN, 1993, 5: 44.
  29. Norley S.G., Wardley R.C. Investigation of porcine natural-killer cell activity with reference to African swine fever virus infection. Immunology, 1983, 49: 593-597.
  30. Norley S.G., Wardley R.C. Cytotoxic lymphocytes induced by African swine fever infection. Res. Vet. Sci., 1984, 37: 255-257.
  31. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M., Portugal F., Vigario J.D., Martins C.L. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol., 2001, 82(3): 513-523 CrossRef
  32. Wardley R.C., Norley S.G., Martins C.V., Lawman M.J.P. The host response to African swine fever virus. Progres en Virologie Medicale, 1987, 34: 180-192.
  33. Alonso F.,  Domínguez J.,  Viñuela E.,  Revilla Y. African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Res., 1997, 49: 123-130 CrossRef
  34. Martins C.L.V., Lawman M.J.P., Scholl T., Mebus C.A., Lunney J.K. African swine fever virus specific porcine cytotoxic T cell activity. Arch. Virol., 1993, 129(1-4): 211-225 CrossRef
  35. Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol., 2005, 86: 2445-2450CrossRef
  36. Sereda A.D., Solovkin S.L., Senechkina E.K., Makarov V.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1994, 6: 112-115. 
  37. Sereda A.D. Nauchnyi zhurnal KubGAU (Krasnodar) (IT-resource), 2010, 62(08): 1-9 (http://ej.ku-bagro.ru/2010/08/pdf/24.pdf).
  38. Makarov V.V., Vishnyakov I.F., Kolomytsev A.A., Sereda A.D. Byulleten' eksperimental'noi biologii i meditsiny, 1995, 12: 599-602. 
  39. Sereda A.D. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 4: 59-64 CrossRef, CrossRef 
  40. Makarov V.V. Afrikanskaya chuma svinei [African swine fever]. Moscow, 2011. 
  41. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M., Argilaguet J.M., Netherton C.L., Oura C.A., Martins C., Rodríguez F. Cellular immunity in ASFV responses. VirusRes., 2013, 173(1): 110-121 CrossRef
  42. Argilaguet J.M., Perez-Martin E., Gallardo C., Salguero F.J., Borrego B., Lacasta A., Accensi F., Diaz I., Nofrarias M., Pujols J., Blanco E., Perez-Filgueira M., Escribano J.M., Rodriguez F. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine, 2011, 29: 5379-5385 CrossRef
  43. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I.,  López-Soria S., Escribano J.M., Reche P.A., Rodríguez F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): 940-942 CrossRef
  44. Borca M.V., Kutish G.F., Afonso C.L., Irusta P., Carrillo C., Brun A>., Sussman M., Rock D.L. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology, 1994, 199(2): 463-468 CrossRef
  45. Rodriguez J.M., Yanez R.J., Almazan F., Vinuela E., Rodriguez J.F. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology, 1993, 67(9): 5312-5320.
  46. Kay-Jackson P.C., Goatley L.C., Cox L., Miskin J.E., Parkhouse R.M.E., Wienands J., Dixon L.K. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J. Gen. Virol., 2004, 85: 119-130 CrossRef
  47. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol., 2004, 100: 117-134 CrossRef
  48. Goatley L.C., Dixon L.K. Processing and localization of the African swine fever virus CD2v transmembrane protein. J. Virol., 2011, 85(7): 3294-3305 CrossRef
  49. Sereda A.D., Makarov V.V. Veterinariya, 1992, 1: 22-24. 
  50. Sereda A.D., Anokhina E.G., Makarov V.V. Voprosy virusologii, 1994, 39(6): 278-281.
  51. Malogolovkin A., Burmakina G., Tulman E.R. Delhon G., Diel D.G., Salnikov N., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus CD2v and C-type lectin gene loci mediate serologic specificity. J. Gen. Virol., 2015, 96: 866-873 CrossRef

back