БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2022.5.954rus

УДК 635.64:631.52:577.21

Работа выполнена в рамках Государственного задания № 0431-2022-0004.

 

ОСОБЕННОСТИ ПЕРВИЧНОЙ СТРУКТУРЫ ГЕНА Ph-3,
ВЫЯВЛЕННЫЕ ПРИ СОЗДАНИИ НОВОГО МАРКЕРА
УСТОЙЧИВОСТИ ТОМАТА К ФИТОФТОРОЗУ

В.В. МАРТЫНОВ1 , Е.Г. КОЗАРЬ2, И.А. ЕНГАЛЫЧЕВА2

Фитофтороз, вызываемый оомицетом Phytophthora infestans (Mont.) de Bary, — одно из самых вредоносных заболеваний томатов. Наиболее перспективным методом борьбы с ним остается выведение устойчивых сортов, при создании которых широко используется интрогрессия генов устойчивости из дикорастущих родственных видов. В частности, несколько генов устойчивости к фитофторозу, идентифицированных у дикого вида томата Solanum pimpinellifolium, были интрогрессированы в культурные сорта. Наиболее сильным геном считается Ph-3, поскольку он обеспечивает устойчивость к множеству изолятов P. infestans. На сегодняшний день известны ДНК-маркеры, так или иначе ассоциированные с этим геном. Однако в геноме томата были обнаружены гомологи этого гена, которые не обладают функциональной активностью. В настоящей работе впервые показано, что в сортах томата отечественной селекции при наличии гена Ph-3 отсутствуют другие его гомологи. Также впервые установлено, что в последовательности гена Ph-3присутствует вставка ретротранспозона, которая может приводить к потере геном своей функциональной активности. Нашей целью было создание простого в использовании высокоспецифичного ДНК-маркера гена Ph-3, с помощью которого можно отличить Ph-3 от его структурных гомологов, и валидация этого маркера в сравнении с уже известными маркерами на основе анализа коллекции отечественных сортов и линий томата и оценки связи маркеров с полевой устойчивостью к фитофторозу. В работе использовали 24 образца томата (Solanum lycopersicum L.). Исследования проводили в 2021 году на опытном поле ФГБНУ ФНЦО (Московская обл., Одинцовский р-н). Рассаду высаживали в грунт в I декаде июня. Поражение фитофторозом учитывали в динамике через каждые 7 сут, начиная с появления первых симптомов (III декада июля). Тотальную ДНК выделяли из молодых листьев 2-недельных растений при помощи набора реагентов Сорб-ГМО-Б («Синтол», Россия). Дизайн праймеров для специфичной амплификации гена Ph-3 осуществляли на основе множественного выравнивания нуклеотидной последовательности гена Ph-3 (GenBank no. KJ563933) и его структурных гомологов SlRGA1, SlRGA2, SlRGA3 и SlRGA4. Были подобраны праймеры, амплифицирующие фрагмент гена Ph-3 размером 412 п.н.: прямой 5′-AATATTGAAAATAGCTGCACTGA-3′ и обратный 5′-CGAGATTTGGAGGGAATGTAA-3′. Созданный маркер получил название Ph3-412. Кроме того, для сравнительного анализа использовали праймеры маркера NC-LB-9-6678, амплифицирующие фрагменты размером 601 и 907 п.н.: 5′-CCTTAATGCAATAGGCAAAT-3′ и 5′-ATTT-GAATGTTCTGGATTGG-3′, последовательности которых абсолютно консервативны для гена Ph-3 и его гомологов. Для определения нуклеотидных последовательностей полученных ампликонов их клонировали в вектор pAL-TA («Евроген», Россия), которым трансформировали компетентные клетки Escherichia coli DH5a, и секвенировали по методу Сэнгера. Осуществляли множественное выравнивание нуклеотидных последовательностей с последующим анализом результатов выравнивания. Для построения дендрограммы использовали программу TREECON (http://bioinfor-matics.psb.ugent.be/software/details/Treecon). Производные аминокислотные последовательности были получены с помощью программы EditSeq (https://macdownload.informer.com/editseq/down-load/). Для поиска гомологовполученных последовательностей в базе данных NCBI использовали программу BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). При сравнении результатов молекулярного анализа с данными фенотипической оценки полевой устойчивости к фитофторозу ни один из маркеров не показал однозначной связи с полевой устойчивостью. Мы подтвердили, что амплифицируемый с помощью праймеров Ph3-412 фрагмент принадлежит гену Ph-3, в то время как фрагмент размером 601 п.н., который получают с праймерами NC-LB-9-6678, соответствует гомологу SlRGA4. Показано, что фрагмент размером 907 п.н., полученный с теми же праймерами, гомологичен гену Ph-3, но при этом содержит вставку LTR ретротранспозона семейства Ty1-copia размером 306 п.н. У всех сортов, у которых был обнаружен ген Ph-3, он содержал вышеуказанную вставку. Наличие такой вставки может приводить к потере функциональной активности, что необходимо учитывать при маркировании гена Ph-3. Исходя из этого, набольшую селекционную ценность представляют генотипы, у которых ген Ph-3 не имеет вставки ретротранспозона.

Ключевые слова: томаты, фитофтороз, ген Ph-3, ДНК-маркеры, гены устойчивости.

 

 

FEATURES OF THE PRIMARY STRUCTURE OF THE Ph-3 GENE, REVEALED BY DEVELOPMENT OF A NEW GENE-BASED MARKER OF LATE BLIGHT RESISTANCE IN TOMATO

V.V. Martynov1 , E.G. Kozar’2, I.A. Engalycheva2

Late blight caused by the oomycete Phytophthora infestans (Mont.) de Bary is one of the most harmful diseases of tomatoes. Late blight control remains challenging due to the high genetic variability and complex racial composition of P. infestans. Therefore, the most promising method of combating late blight is the breeding of resistant varieties of tomato. When creating resistant varieties, the introgression of resistance genes from wild-growing related species is widely used. In particular, several late blight resistance genes identified in the wild tomato species Solanum pimpinellifolium have been introgressed into tomato cultivars. Among these genes, the Ph-3 gene is considered to be the strongest late blight resistance gene, as it provides resistance to a variety of P. infestans isolates. Therefore, considerable efforts of scientific groups around the world are directed to the study of this gene in order to include it in breeding programs and introduce it into new commercial varieties and lines of tomato. To date, DNA markers associated with this gene are known. However, homologues of this gene were found in the tomato genome, which do not have functional activity. Analysis of the multiple alignment of the nucleotide sequences of the Ph-3 gene and its homologues showed that the primers used in the known markers for amplification of this gene are in the conservative regions of these sequences, and it is impossible to specifically amplify the Ph-3 gene with them. Therefore, the aim of this work was to design a new highly specific marker of the Ph-3 gene and compare it with already known markers by analyzing the collection of tomato varieties of the Federal Scientific Center for Vegetable Growing for the presence of known and new markers and assessing the linkage of these markers with resistance to late blight disease in the studied varieties. To this end specific primers were designed (5′-AATATTGAAAATAGCTGCACTGA-3′/5′-CGAGATTTGGAGGGAATGTAA-3′) that discern the Ph-3 gene from its homologues and amplify a 412 bp gene fragment (the Ph3-412 marker). Using these primers, 24 tomato (Solanum lycopersicum L.) varieties bred at the Federal Scientific and Technical Center and tested for late blight field resistance (Federal Scientific and Technical Center, Moscow Province, 2021) were analyzed. Also, these varieties were analyzed with known marker NC-LB-9-6678. To determine the nucleotide sequence of the new marker, we cloned the amplified product obtained from the studied varieties into pAL-TA vector and sequenced the resulting clones. In addition, we cloned and sequenced 601 and 907 bp fragments obtained with a known marker. We compared the nucleotide sequences of all three fragments with the sequences of the prototype gene and its known homologues. As a result, we confirmed that the fragment amplified using primers designed by us belongs to the Ph-3 gene, while the 601 bp fragment obtained with the known primers corresponds to the SlRGA4 homologue, and the 907 bp fragment obtained with the same primers is homologous to the Ph-3 gene but it contains an insertion of the LTR retrotransposon of the Ty1-copy family with a size of 306 bp. Thus, the gene containing such insertion is most likely inactive. We also showed that in all analyzed varieties, in which the Ph-3 gene was found, this gene contains the abovementioned insertion. The presence of such insertion can lead to a loss of functional activity; this must be taken into account when marking the Ph-3 gene. For the breeding programs it is necessary to identify plants in which the Ph-3 gene does not have this retrotransposon insertion.

Keywords: tomatoes, late blight disease, Ph-3 gene, DNA markers, resistance genes.

 

1ФГБНУ Всероссийский НИИ
сельскохозяйственной биотехнологии,

127550 Россия, г. Москва, ул. Тимирязевская, 42,
e-mail: martynov.vik@gmail.com ✉;
2ФГБНУ Федеральный научный центр овощеводства,
143080 Россия, Московская обл., Одинцовский городской округ,
пос. ВНИИССОК, ул. Селекционная, 14,
e-mail: kozar_eg@mail.ru, engirina1980@mail.ru

Поступила в редакцию
1 июля 2022 года

 

назад в начало

 


СОДЕРЖАНИЕ