PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.885eng

UDC: 635.64:581.192:575:577.2

 

STRUCTURAL AND FUNCTIONAL ANALYSIS OF GME1 HOMOLOGOUS GENES AND ASCORBATE ACCUMULATION IN CULTIVATED AND WILD TOMATO SPECIES

D.Yu. Tyapkina1, 2 , M.A. Slugina2, E.Z. Kochieva2

1LLC Research Institute of Vegetable Breeding, of. 1, 5, korp. 50, ul. 2-ya Entuziastov, Moscow, 111024 Russia, e-mail daria_t@list.ru ✉;
2Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, 33/2, Leninskii prospect, Moscow, 119071 Russia, e-mail mashinmail@mail.ru, ekochieva@yandex.ru

ORCID:
Tyapkina D.Yu. orcid.org/0000-0001-8353-1170
Kochieva E.Z. orcid.org/0000-0002-6091-0765
Slugina M.A. orcid.org/0000-0003-1281-3837

Received July 9, 2021

 

Ascorbic acid (ascorbate, vitamin C) plays an important role in various metabolic processes both in plants and humans. Increasing the ascorbate content in plants using breeding approaches is important, both from the point of view of increasing the nutritional value of fruits, and from the point of view of plant resistance to stress. It is known that tomato has high potential as an ascorbate source in the human diet. Unfortunately, the ascorbate levels in ripe fruits of modern tomato (Solanum lycopersicum) cultivars and hybrids are low in comparison with relative wild tomato species. Use wild tomato accessions in breeding programs can significantly increase the ascorbate content of ripe fruits. However, for effective breeding for this trait, a more detailed study of the genetic determinants responsible for the ascorbate levels increase in in ripe fruits is necessary. In this study, we cloned and sequenced novel GME1gene homologous, which plays a key role in ascorbate biosynthesis in cultivated tomato and 11 wild tomato species. Structural analysis showed a low GME1variability level of in tomato species. In the GME1 coding sequences, 28 SNPs were identified, of which only two led to nonsynonymous aminoacid substitutions (G2E and E281D) in S. neorickii and S. peruvianum var. dentatum. Analysis of GME1 motifs and domains did not reveal any specific motifs either at the interspecific level or at more distant taxonomic levels. The high GME1 conservatism observed in quite evolutionarily distant tomato species is most likely due to the functional significance of this enzyme for the ascorbate synthesis and, indirectly, for protection from stress factors, primarily photostress. No correlation was found between amino acid or nucleotide substitutions and ascorbate levels in fruits. Expression analysis, including comparative interspecies organ-specific analysis and analysis of the dependence of the ascorbate content in mature fruits in tomato cultivars and wild species accessions and the GME1 expression level, also did not reveal a relationship between transcriptional levels and ascorbate concentration. It can also be assumed that the final ascorbate content in the ripe tomato fruit may be influenced not by the intensity of GME1 expression at the last stage of fruit ripening, but by how this gene was active at earlier stages of ripening.

Keywords: GME1, gene expression, SNP, Solanum lycopersicum, wild tomato species, tomato cultivars, ripe fruits, ascorbate content.

 

REFERENCES

  1. Barth C., De Tullio M., Conklin P. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 2006, 57(8): 1657-1665 CrossRef
  2. Fotopoulos V., De Tullio M.C., Barnes J., Kanellis K. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. Journal of Experimental Botany, 2008, 59(4): 729-737 CrossRef
  3. Foyer C.H., Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 2011, 155(1): 2-18 CrossRef
  4. Fotopoulos V., Kanellis A.K. Altered apoplastic ascorbate redox state in tobacco plants via ascorbate oxidase overexpression results in delayed dark-induced senescence in detached leaves. Plant Physiology and Biochemistry, 2013, 73: 154-160 CrossRef
  5. Smirnoff N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine, 2018, 122: 116-129 CrossRef
  6. Conklin P.L., Barth C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell and Environment, 2004, 27(8): 959-970 CrossRef
  7. Müller-Moulé P., Golan T., Niyogi K.K. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiology, 2004, 134(3): 1163-1172 CrossRef
  8. Linster C.L., Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS Journal, 2007, 274(1): 1-22 CrossRef
  9. Granger M., Eck P. Dietary vitamin C in human health. Advances in Food and Nutrition Research, 2018, 83: 281-310 CrossRef
  10. Celma A.R., Cuadros F., López-Rodríguez F. Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing, 2009, 87(4): 282-291 CrossRef
  11. FAOSTAT. Food and Agriculture Organization of the United Nations Statistical Databases, 2019. Available: http://faostat.fao.org/. No date.
  12. Wang F., Kang S.Z., Du T.S., Li F.S., Qiu R.J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 2011, 98(8): 1228-1238 CrossRef
  13. Di Matteo A., Sacco A., Anacleria M., Pezzotti M., Delledonne M., Ferrarini A., Frusciante L., Barone A. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biology, 2010, 10(1): 1-11 CrossRef
  14. Rousseaux M.C., Jones C.M., Adams D., Chetelat R., Bennett A., Powell, A. QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theoretical and Applied Genetics, 2005, 111(7): 1396-1408 CrossRef
  15. Schauer N., Semel Y., Roessner U., Gur A., Balbo I., Carrari F., Pleban T., Perez-Melis A., Bruedigam C., Kopka J., Willmitzer L., Zamir D., Fernie A.R. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 2006, 24(4): 447-454 CrossRef
  16. Schauer N., Semel Y., Balbo I., Steinfath M., Repsilber D., Selbig J., Pleban T., Zamir D., Fernie A.R. Mode of inheritance of primary metabolic traits in tomato. The Plant Cell, 2008, 20(3): 509-523 CrossRef
  17. Stevens R., Buret M.,  Duffe P., Garchery C., Baldet P., Rothan C., Causse M. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007, 143(4): 1943-1953 CrossRef
  18. Stevens R., Page D., Gouble B., Garchery C., Zamir D., Causse M. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell and Environment, 2008, 31(8): 1086-1096 CrossRef
  19. Zou L.P., Li H.X., Ouyang B., Zhang J.H., Ye Z.B. Cloning, expression, and mapping of GDP-D-mannose pyrophosphorylase cDNA from tomato (Lycopersicon esculentum). Yi Chuan Xue Bao, 2006, 33(8): 757-764 CrossRef
  20. Gilbert L., Alhagdow M., Nunes-Nesi A., Quemener B., Guillon F., Bouchet B., Faurobert M., Gouble B., Page D., Garcia V., Petit J. GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. The Plant Journal, 2009, 60(3): 499-508 CrossRef
  21. Zhang C., Liu J., Zhang Y., Cai X., Gong P., Zhang J., Wang T., Li H., Ye Z. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep., 2011, 30(3): 389-398 CrossRef
  22. Li M., Ma F., Liang D., Li J., Wang Y. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS ONE, 2010, 5(12): 14281 CrossRef
  23. Liu F., Wang L., Gu L., Zhao W., Su H., Cheng X. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chemistry, 2015, 188: 399-405 CrossRef
  24. Tao J., Wu H., Li Z., Huang C., Xu X. Molecular evolution of GDP-D-mannose epimerase (GME), a key gene in plant ascorbic acid biosynthesis. Frontiers in Plant Science, 2018, 9: 1293 CrossRef
  25. Giovanelli G., Zanoni B., Lavelli V., Nani R. Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 2002, 52(2): 135-141 CrossRef
  26. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349 CrossRef
  27. González-Aguilera K.L., Saad C.F., Chávez Montes R.A., Alves-Ferreira M., de Folter S. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1. Frontiers in Plant Science, 2016, 7: 1386 (doi.org/10.3389/fpls.2016.01386">CrossRef
  28. Slugina M.A., Filyushin M.A., Shchennikova A.V., Kochieva E.Z., Skryabin K.G. FAS, YABBY2, and YABBY5 gene expression profile correlates with different fruit locule number in tomato. Russian Journal of Genetics, 2020, 56(4): 401-407 CrossRef
  29. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874 CrossRef
  30. Choi Y., Sims G.E., Murphy S., Miller J.R., Chan A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE, 2012, 7(10): e46688 CrossRef
  31. Bailey T.L., Boden M., Buske F.A. “MEME SUITE: tools for motif discovery and searching”. Nucleic Acids Research, 2009, 37(2): 202-208 CrossRef
  32. Mellidou I., Koukounaras A., Kostas S., Patelou E., Kanellis A.K. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes, 2021, 2(5): 694 CrossRef
  33. The 100 Tomato Genome Sequencing Consortium, 2014. Available: https://solgenomics.net/projects/tomato100/. No date.
  34. Wolucka B.A., Van Montagu M. The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry, 2007, 68(21): 2602-2613 CrossRef
  35. Bairoch A., Apweiler R., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M.J., Natale D.A., O'Donovan C., Redaschi N., Yeh L.S. The Universal Protein Resource (UniProt). Nucleic Acids Research, 2004, 33(1): 154-159 CrossRef
  36. Major L.L., Wolucka B.A., Naismith J.H. Structure and function of GDP-mannose-3',5'-epimerase: an enzyme which performs three chemical reactions at the same active site. Journal of the American Chemical Society, 2005, 127(51): 18309-18320 CrossRef
  37. Wierenga R.K., De Maeyer M.C.H., Hol W.G.J. Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochemistry, 1985, 24(6): 1346-1357 CrossRef
  38. Mounet-Gilbert L., Dumont M., Ferrand C., Bournonville C., Monier A., Jorly J., Lemaire-Chamley M., Mori K., Atienza I., Hernould M., Stevens R. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development. Journal of Experimental Botany, 2016, 67(15): 4767-4777 CrossRef
  39. Munir S., Mumtaz M.A., Ahiakpa J.K., Liu G., Chen W., Zhou G., Zheng W., Ye Z., Zhang Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21(1): 1-15 CrossRef

 

back