PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.934eng

UDC: 635.63:581.132:631.588.5

Acknowledgments:
The work was carried out according to state order No. 0574-2019-0002.

 

THE INFLUENCE OF DIFFERENT LIGHT SOURCES ON PHOTOSYNTHETIC PERFORMANCE AND PRODUCTIVITY OF Cucumis sativus L. HYBRID TRISTAN F1 IN AEROPONIC PHYTOTRON FACILITIES

L.Yu. Martirosyan1, 3, A.A. Kosobryukhov1, 2, V.V. Martirosyan1,
Yu.Ts. Martirosyan1, 3

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail levon-agro@mail.ru, valentbond@mail.ru, yumart@yandex.ru (✉ corresponding author);
2Federal Research Center Pushchino Scientific Center for Biological Research RAN, Institute of Basic Biological Problems, 2, ul. Institutskaya, Pushchino, Moscow Province, 142290 Russia, e-mail kosobr@rambler.ru;
3Emanuel Institute of Biochemical Physics RAS, 4, ul. Kosygina, Moscow, 119334 Russia

ORCID:
Martirosyan L.Yu. orcid.org/0000-0003-1769-6377
Martirosyan V.V. orcid.org/0000-0003-1178-8887
Kosobryukhov A.A. orcid.org/0000-0001-7453-3123
Martirosyan Yu.Ts. orcid.org/0000-0001-8825-2381

Received August 25, 2021

 

Global climate change and anthropogenic pollution of the environment pose serious problems for agricultural producers. Drought or flooding of fields, the emergence of new diseases and pests, and reduction of agricultural land pose serious problems in providing food for the growing population. Moreover, more than half of the world’s population lives in cities, and this proportion is expected to increase to 67 % at 2050. To meet the growing needs of the population of megacities, new non-standard approaches and technologies are needed to increase the production of fresh vegetables, fruits, and berries. Vertical plant growing in the so-called “city farms” is a promising resource-saving method of compact multi-tier cultivation of various plants, especially greens, vegetables, medicinal and ornamental plants. The use of hydroponics and aeroponics allows a new type of agriculture that combines biotechnology, industrial architecture, design and successfully integrates into urban infrastructure. A significant increase in the production and yield of basic food vegetable crops, especially in “city farms” necessitates understanding needs of plants for light, mineral nutrition and other equally important factors, e.g., temperature, humidity, CO2 content. Under the conditions of a phytotron that imitates a “city farm” model, we compared the effects of high-pressure sodium lamps (HPSLs) DNaT-600 traditional for greenhouse plant lighting and alternative light-emitting diode phytolamps (LEDs) on photosynthesis and, ultimately, the production process in Cucumis sativus L. Tristan F1 hybrid as a cucumber crop usually cultivated in greenhouses. In treatments 2 and 3, LED irradiators and DNaT-600 lamps at a radiation intensity of 305 and 413 mmol photons·m-2·s-1 and a temperature of 25 and 26 °С, respectively, provided formation of an effective photosynthetic apparatus capable of performing at an increase in light intensity up to 1200 mmol photons·m-2·s-1. The LEDs of treatment 2 can serve as a single light source when growing cucumbers in a “city farm”. These irradiators are characterized by a smaller proportion of blue (λmax = 450 nm) and far red (λmax = 730 nm) light and a larger proportion of red (λmax = 660 nm) light in the spectrum. However, for early harvesting, the DNaT-600 lamps with the standard plant lowering method are preferable. The period of growing plants under DnaT-600 irradiation in the “city farm” simulating aeroponic phytotron with a limitation of the phytolamp height of 1.5 m without plant lowering, ended 12 days earlier than under LED irradiators. Nevertheless, the yield during the growing season was higher for DNaT-600 than for LED irradiators with the same energy consumption. The data obtained are helpful in the design and creation of modern biotechnological enterprises, such as vertical “city farms” for the food production and biotechnological enterprises for production of biopharmaceuticals.

Keywords: Cucumis sativus L., photosynthetic apparatus, LED phyto lamps, growth processes, aeroponic phytotron, city farms.

 

REFERENCES

  1. Ackerman K., Conard M., Culligan P., Plunz R., Sutto M. P.,  Whittinghill, L Sustainable food systems for future cities: THE potential of urban agriculture. The Economic and Social Review, 2014, 45(2): 189-206.
  2. Qian M., Rosenqvist E., Flygare A.M., Kalbina I., Teng Y., Jansen M.A.,  Strid Å.  UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield. Scientia Horticulturae, 2020, 263: 109110 CrossRef
  3. Dal'ke I.V., Grigorai E.E., Golovko T.K. Izvestiya TSKHA, 2014, 5: 13-23 (in Russ.).
  4. Batista D.S., Felipe S.H.S., Silva T.D., de Castro K.M., Mamedes-Rodrigues T.C., Miranda N.A., Otoni W.C. Light quality in plant tissue culture: does it matter? In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 195-215 CrossRef
  5. Hernández R., Kubota C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 2016, 121: 66-74 CrossRef
  6. Garcia C., Lopez R.G. Supplemental radiation quality influences cucumber, tomato, and pepper transplant growth and development. HortScience, 2020, 55(6): 804-811 CrossRef
  7. Bantis F., Smirnakoub S., Ouzounisc T., Koukounarasa A., Ntagkase N., Radogloub K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 2018, 235: 437-45 CrossRef
  8. Kaiser E., Weerheim K., Schipper R., Dieleman J.A. Partial replacement of red and blue by green light increases biomass and yield in tomato. Scientia Horticulturae, 2019, 249: 271-279 CrossRef
  9. Martirosyan Yu.Ts., Polyakova M.N., Dilovarova T.A., Kosobryukhov A.A. Photosynthesis and productivity of potato plants in the conditions of different spectral irradiation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 107-112 CrossRef
  10. Hogewoning S.W., Trouwborst G., Maljaars H., Poorter H., van Ieperen W.,  Harbinson J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 2010, 61(11): 3107-3117 CrossRef
  11. Lin K-H., Huang M.-Y., Huang W.-D., Hsu M.-H., Yang Z.-W., Yang C.-M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 2013, 150: 86-91 CrossRef
  12. Piovene C., Orsini F., Bosi S., Sanoubar R., Bregola V., Dinelli G., Gianquinto G. Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae, 2015, 193: 202-208 CrossRef
  13. Xie J., Liu H., Song S., Sun G., Chen R.  Effects of different LEDs on photosynthesis in greenhouse cucumber. Acta Horticulturae, 2015, 1107(12): 95-100 CrossRef
  14. Kang W.H., Park J.S., Park K.S., Son J.E. Leaf photosynthetic rate, growth, and morphology under different fractions of red, blue, and green light from light emitting diodes (LEDs). Horticulture, Environment and Biotechnology, 2016, 57(6): 573-579 CrossRef
  15. Chen X.-L., Xue X.-Z., Guo W.-Z., Wang L.-C., Qiao X.-J. Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae, 2016, 200: 111-118 CrossRef
  16. Li Q., Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 2009, 67(1): 59-64 CrossRef
  17. Tang Y., Guo S., Ai W., Qin L. Effects of red and blue light emitting diodes (LEDs) on the growth and development of lettuce (var. Youmaicai). SAE Technical Paper 2009-01-2565, 2009: 6 CrossRef
  18. Tikhomirov A.A., Sharupich V.P., Lisovskii G.M. Svetokul'tura rastenii: biofizicheskie i tekhnologicheskie osnovy [Plant photoculture: biophysical and technological foundations]. Novosibirsk, 2000 (in Russ.).
  19. Kang S., Zhang Y., Zhang Y., Zou J., Yang Q., Li T. Ultraviolet-A radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) seedlings. HortScience, 2018, 53(10): 1429-1433 CrossRef
  20. Smith H. The ecological functions of the phytochrome family-clues to a transgenic program of crop improvement. Photochemistry and Photobiology, 1992, 56(5): 815-822 CrossRef
  21. Kreslavski V.D., Strokina V.V., Pashkovskiy P.P., Balakhnina T.I., Voloshin R.A., Alwaselc S., Kosobryukhov A.A., Allakhverdiev S.I. Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. Journal of Photochemistry & Photobiology, B: Biology, 2020, 210: 111976 CrossRef
  22. Kreslavski V.D., Los D.A., Schmitt F.J., Zharmukhamedov S.K., Kuznetsov V.V., Allakhverdiev S.I. The impact of the phytochromes on photosynthetic processes.  Biochim. Biophys. Acta Bioenerg., 2018, 1859(5): 400-408 CrossRef
  23. Johkan M., Shoji K., Goto F., Hahida S., Yoshihara T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany, 2012, 75: 128-133 CrossRef
  24. Polyakova M.N., Martirosyan Yu.Ts., Dilovarova T.A., Kosobryukhov A.A. Photosynthesis and productivity of basil plants (Ocimum basilicum L.) under different irradiation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(1): 124-130 CrossRef
  25. Martirosyan Yu.Ts., Martirosyan L.Yu., Kosobryukhov A.A. Dynamic regulation of photosynthetic processes under variable spectral led irradiation of plants. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 130-139 CrossRef
  26. Kalantari F., Mohd Tahir O., Mahmoudi Lahijani A., Kalantari S. A review of vertical farming technology: a guide for implementation of building integrated agriculture in cities. Advanced Engineering Forum, 2017, 24: 76-91 CrossRef
  27. Jishi T., Kimura K., Matsuda R., Fujiwara K. Effects of temporally shifted irradiation of blue and red LED light on lettuce growth and morphology. Scientia Horticulturae, 2016, 198: 227-232 CrossRef
  28. Wang H., Gu M., Cui J., Shi K., Zhou Y., Yu J. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 2009, 96(1): 30-37 CrossRef
  29. Prioul J.L., Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Annals of Botany, 1977, 41(174): 789-800.
  30. Parsons R., Ogston S.A. Photosyn Assistant. Software for analysis of photosynthesis. Dundee Scientific, Scotland, UK, 1998.
  31. Gol'tsev V.N., Kaladzhi Kh.M., Kuzmanova M.A. Allakhverdiev S.I. Peremennaya i zamedlennaya fluorestsentsiya khlorofilla a — teoreticheskie osnovy i prakticheskoe prilozhenie v issledovanii rastenii [Variable and delayed fluorescence of chlorophyll a — theoretical foundations and practical applications in plant research]. Izhevsk-Moscow, 2014 (in Russ.).
  32. Kowalczyk K., Gajc-Wolska J., Mirgos M., Geszprych A., Kowalczyk W., Sieczko L., Gajewski M. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Scientia Horticulturae, 2020, 265: 109217 CrossRef
  33. Lighting comparison: LED vs high pressure sodium/low pressure sodium. Available: https://www.stouchlighting.com/blog/led-vs-hps-lps-high-and-low-pressure-sodium. Accessed: 10.06.2021.
  34. Advanced thermal management for LED grow lights. Available: https://www.horti-growlight.com/en-gb/advanced-thermal-management-led-grow-lights. Accessed: 10.06.2021.
  35. Chermnykh L.N., Chugunova N.G., Kosobryukhov A.A., Karpilova I.F., Chermnykh R.M. Fiziologiya rastenii, 1980, 27(5): 1101-1109 (in Russ.).
  36. The DesignLights Consortium. Horticultural lighting qualified products list. Available: https://www.designlights.org/horticultural-lighting/. Accessed: 30.03.2020.
  37. Pattison P.M., Hansen M., Tsao J.Y. LED lighting efficacy: status and directions. Comptes Rendus Physique, 2018, 19(3): 134-145 CrossRef
  38. Jinxiu S., Qingwu M., Weifen D., Dongxian H. Effects of light quality on growth and development of cucumber seedlings in controlled environment. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 312-318 CrossRef
  39. Randall W.C., Lopez R G. Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience, 2014, 49(5): 589-595 CrossRef
  40. Nelson J.A., Bugbee B. Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE, 2014, 9(6): e99010 CrossRef 

 

back