PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.5.958eng

UDC: 633.1:632.4:636.085.19

 

ADVANCES IN MYCOTOXICOLOGICAL RESEARCH OF FORAGE GRAIN CROPS

G.P. Kononenko , E.V. Zotova, A.A. Burkin

All-Russian Research Institute for Veterinary Sanitation, Hygiene and Ecology — Branch of FSC ARRIEV RAS, 5, Zvenigorodskoe sh., Moscow, 123022 Russia,e-mail kononenkogp@mail.ru (✉ corresponding author), ezotova63@gmail.com, aaburkin@mail.ru

ORCID:
Kononenko G.P. orcid.org/0000-0002-9144-615X
Burkin A.A. orcid.org/0000-0002-5674-2818
Zotova E.V. orcid.org/0000-0002-1479-8602

Received May 25, 2021

Recently, production of forage from the vegetative mass of grain crops has been steadily growing in Russia (Z.L. Fedorova, L.V. Romanenko, 2016; V.V. Popov, 2017; E.A. Volkova et al., 2018). For the successful and safe use of these products, it is extremely important not only to strictly observe the recommended terms, mowing height, drying conditions and technology of silaging grain-stem mass, but also to have the most complete information about the sanitary quality of raw materials. The study of the peculiarities of contamination by toxigenic microscopic fungi and mycotoxins of wild and cultivated cereals has already begun (G.Yu. Laptev et al., 2014; A.A. Burkin, G.P. Kononenko, 2015; G.P. Kononenko et al., 2015; E.A. Yildirim et al., 2019). However, this aspect has not been studied with a focus on forage crops. This work, for the first time, presents data on contamination of vegetative grain crops with toxic metabolites of microscopic fungi and on changes in the content of mycotoxins over phases of plant development and in ears at the beginning of grain maturation. The aim of this work was a mycotoxicological study of common barley (Hordeum vulgare L.), soft wheat (Triticum aestivum L.), and oats (Avena sativa L.) during in the periods optimal for hay harvesting and in unripe ears of wheat and barley. The samples (spring barley H. vulgare cv. Vladimir, spring soft wheat T. aestivum cv. Ivolga, and oats A. sativa cv. Skakun) were collected from April 24 to August 11, 2019 (the fields of the Russian State Agrarian University — Moscow Timiryazev Agricultural Academy and the Williams Federal Scientific Center for Feed Production and Agroecology, Moscow Province). Beginning of tillering—ligule formation was noted as period 1, opening of the flag leaf envelope and appearance of the awns above the ligule—early milk ripeness — as period 2. At the stage of grain maturation, from the aboveground parts cut 3-5 cm from the soil surface the ears were separated. The concentrations of T-2 toxin (T-2), deoxynivalenol (DON), zearalenone (ZEN), fumonisins (FUM), alternariol (AOL), roridin A (ROA), aflatoxin B1 (AB1), sterigmatocystin (STE), cyclopiazonic acid (CPA), emodin (EMO), ochratoxin A (OA), citrinin (CIT), mycophenolic acid (MPA), PR toxin (PR), and ergot alkaloids (EA) were measured by indirect competitive enzyme immunoassay (ELISA) test. The detected load of mycotoxins was generally low. AOL, EMO were present in small and comparable amounts of 15-32 μg/kg and 14-29 μg/kg, as well as CPA and EA with wider ranges of variation, from 34 to 180 μg/kg and from 2 to 115 μg/kg. Fusariotoxins T-2, DON, and ZEN appeared in single samples, and FUM was not detected. ROA was also absent, and PR was extremely rare and detected only in one sample of wheat. In all crops, tens of μg/kg MPA and STE were found, and AB1 amounted to 1-3 μg/kg. Combined contamination of OA and CIT occurred only in barley (more often at tillering and ligule formation), while OA contamination occurred, though rare, in wheat and oats at the levels close to the detection limit. Lower contamination by mycotoxins was characteristic of vegetative oat plants compared to barley and wheat, which is practically important since fodder oat is popular as a green fodder for preservation, both separately and in crop mixtures. Wheat and barley ears at the beginning of grain maturation were noticeably different from the aboveground parts of the plants and showed a uniform tendency to reduce the frequency of mycotoxin detection to single cases or complete absence while maintaining the occurrence of EMO.

Keywords: wheat, barley, oat, plant biomass, mycotoxins, ELISA.

 

REFERENCES

  1. Fedorova Z.L., Romanenko L.V. Genetika i razvedenie zhivotnykh, 2016, 3: 3-14 (in Russ.).
  2. Popov V.V. Adaptivnoe kormoproizvodstvo, 2017, 2: 73-88 (in Russ.).
  3. Volkova E.A., Muratov F.F., Tuaeva E.V., Churilova K.S., Ryzhkov V.A. Dal'nevostochnyi agrarnyi vestnik, 2018, 3(47): 145-153 CrossRef (in Russ.).
  4. Fink-Gremmels J. V sbornike: Mikotoksiny i mikotoksikozy /Pod redaktsiei D. Diaza [In: Mycotoxins and mycotoxicoses. D. Diaz (ed.)]. Moscow, 2006: 157-178 (in Russ.).
  5. Zaki M.M., El-Midany S.A., Shaheen H.M., Rizzi L. Mycotoxins in animals: Occurrence, effects, prevention and management. Journal of Toxicology and Environmental Sciences, 2012, 4(1): 13-28 CrossRef
  6. Inch S., Gilbert J. The incidence of Fusarium species recovered from inflorescences of wild grasses in Southern Manitoba. Canadian Journal of Plant Pathology, 2003, 25(4): 379-383 CrossRef
  7. Postic J., Cosic J., Vrandecic K., Jurkovic D., Saaleh A.A., Leslie J.F. Diversity of Fusarium species isolated from weeds and plant debris in Croatia. Journal of Phytopathology, 2012, 160(2): 76-81 CrossRef
  8. Nichea M.J., Sulyok M., Krska R., Chulze S., Torres A., Ramirez M.L. Fusarium species and mycotoxins present on native grasses from a wetland ecosystem in Argentina. Proc. 13th European Fusarium Seminar dedicated to the Memory of Wally Marasas «Fusarium pathogenicity, mycotoxins, taxonomy, genomics, biosynthesis, metabolomics, resistance, disease control». Martina Franca, Italy, 2015: 128.
  9. Nichea M.J., Palacios S.A., Chiacchiera S.M., Sulyok M., Krska R. Chulze S.N., Torres A.M., Ramirez M.L. Presence of multiple mycotoxins and other fungal metabolites in native grasses from a wetland ecosystem in Argentina intended for grazing cattle. Toxins, 2015, 7(8): 3309-3329 CrossRef
  10. Chehri Kh., Hajeb S., Maassoumi S.M. Morphological and molecular identification and PCR amplification to determine the toxigenic potential of Fusarium graminearum species complex (FGSC) isolated from wild grasses in Iran. Journal of Agricultural Science and Technology, 2017, 19(7): 1617-1629.
  11. Orina A.S., Gavrilova O.P., Gagkaeva T.Yu. Vestnik zashchity rastenii, 2018, 2(96): 35-41 CrossRef (in Russ.).
  12. Gavrilova O.P., Orina A.S., Gagkaeva T.Yu. Agrokhimiya, 2017, 11: 58-66 CrossRef
  13. Orina A.S., Gavrilova O.P., Gagkaeva T.Yu. Zashchita i karantin rastenii, 2017, 6: 25-27 (in Russ.).
  14. Burkin A.A., Kononenko G.P. Mycotoxin contamination of meadow grasses in European Russia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(4): 503-512 CrossRef
  15. Kononenko G.P., Burkin A.A., Gavrilova O.P., Gagkaeva T.Yu. Fungal species and multiple mycotoxin contamination of cultivated grasses and legumes crops. Agricultural and Food Science, 2015, 24: 323-330 CrossRef
  16. Laptev G.Yu., Novikova N.I., Il'ina L.A., Iyldyrym E.A., Nikonov I.N., Filippova V.A., Brazhnik E.A., Korochkina E.A. Agrarnyi vestnik Urala, 2014, 12(130): 33-37 (in Russ.).
  17. Iyldyrym E.A., Il'ina L.A., Filippova V.A., Novikova N.I., Laptev G.Yu., Tyurina D.G., Soldatova V.V. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva, 2019, 3(100): 99-107 CrossRef (in Russ.).
  18. Meier U.Growth stages of mono- and dicotyledonous plants. BBCH Monograph, 2001 CrossRef
  19. Kononenko G.P., Zotova E.V. Uspekhi meditsinskoi mikologii, 2019, 20: 639-643 (in Russ.).
  20. Burkin A.A., Kononenko G.P., Mosina L.V. The first mycotoxicological investigation of white mustard (Sinapis alba L.). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 186-194 CrossRef
  21. Zotova E.V., Kononenko G.P., Burkin A.A. Sovremennaya mikologiya v Rossii, 2017, 7: 202-204 (in Russ.).
  22. Martynyuk T.D., Egorova L.N. Mikologiya i fitopatologiya, 2009, 43(5): 457-459 (in Russ.).
  23. Perrone G., Gallo A. Aspergillus species and their associated mycotoxins. In: Mycotoxigenic fungi. Methods in molecular biology, vol. 1542. A. Moretti, A. Susca (eds.). Humana Press, New York, NY, 2017: 33-49 CrossRef
  24. Munkvold G.P. Fusarium species and their associated mycotoxins. In: Mycotoxigenic fungi. Methods in molecular biology, vol. 1542. A. Moretti, A. Susca (eds.). Humana Press, New York, NY, 2017: 51-106 CrossRef
  25. Perrone G., Susca A. Penicillium species and their associated mycotoxins. In: Mycotoxigenic fungi. Methods in molecular biology, vol. 1542. A. Moretti, A. Susca (eds.). Humana Press, New York, NY, 2017: 107-119 CrossRef
  26. Pinto V.E.F., Patriarca A. Alternaria species and their associated mycotoxins. In: Mycotoxigenic fungi. Methods in molecular biology, vol. 1542. A. Moretti, A. Susca (eds.). Humana Press, New York, NY, 2017: 13-32 CrossRef
  27. Shankar N.B., Shashikala J., Krishnamurthy Y.L. Study on diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiological Research, 2007, 164(3): 290-296 CrossRef
  28. Potshangbam M., Devi S.I., Sahoo D., Strobel G.A. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology, 2017, 8: 325 CrossRef
  29. Lofgren L.A., LeBlanc N.R., Certano A.K., Nachtigall J., LaBine K.M., Riddle J., Broz K., Dong Y., Bethan B., Kafer C.W., Kistler H.C. Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytologist, 2018, 217(3): 1203-1212 CrossRef
  30. Kusari S., Spiteller M., Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities In: Metabolomics. U. Roessner (ed.). InTech, London, 2012: 241-266 CrossRef
  31. Florea S., Panaccione D.G., Schardl C.L. Ergot alkaloids of the family Clavicipitaceae. Phytopathology,2017, 107(5): 504-518 CrossRef
  32. Mishra Y., Singh A., Batra A., Sharma M.M. Understanding the biodiversity and biological applications of endophytic fungi: a review. Journal of Microbial & Biochemical Technology, 2014, S8: 004 CrossRef
  33. Ostry V., Toman J., Grosse Y., Malir F. Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin Journal, 2018, 11(1): 135-148 CrossRef
  34. Card S.D., Faville M.J., Simpson W.A., Johnson R.D., Voisey C.R., de Bonth A.C.M., Hume D.E. Mutualistic fungal endophytes in the Triticeae — survey and description. FEMS Microbiology Ecology, 2014, 88: 94-106 CrossRef
  35. Wirsel S.G.R., Leibinger W., Ernst M., Mendgen K. Genetic diversity of fungi closely associated with common reed. New Phytologist, 2001, 149(3): 589-598 CrossRef
  36. Morakotkarn D., Kawasaki H., Seki T. Molecular diversity of bamboo-associated fungi isolated from Japan. FEMS Microbiology Letters, 2006, 266(1): 10-19 CrossRef
  37. Wei Y.K., Gao Y.B., Zhang X., Su D., Wang Y.H., Xu H., Lin F., Ren A.Z., Chen L., Nie L.Y. Distribution and diversity of Epichloë/Neotyphodium fungal endophytes from different populations of Achnatherum sibiricum (Poaceae) in the Inner Mongolia Steppe, China. Fungal Diversity, 2007, 24: 329-345.
  38. Zhang X., Ren A.Z., Wei Y.K., Lin F., Li C., Liu Z.J., Gao Y.B. Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 2009, 301(1), 12-20 CrossRef
  39. Sánchez Márquez S., Bills G.F., Zabalgogeazeoa I. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Diversity, 2007, 27: 171-195.
  40. Gagkaeva T.Yu., Gavrilova O.P., Orina A.S., Gogina N.N. Zashchita i karantin rastenii, 2020, 8: 19-21 (in Russ.).
  41. Li F., Yoshizawa T. Alternaria mycotoxins in weathered wheat from China. Journal of Agricultural and Food Chemistry, 2000, 48(7): 2920-2924 CrossRef
  42. Omel'chenko M.D., Zherdev A.V., Nikolaev I.V., Zhalieva L.D., Bukhanistaya G.F., Battilani P., Dzantiev B.B. Agrarnaya Rossiya, 2013, 1: 2-9 CrossRef (in Russ.).
  43. Kononenko G.P., Burkin A.A., Zotova E.V. Veterinariya segodnya, 2020, 2(33): 139-145 CrossRef (in Russ.).
  44. Sulyok M., Berthiller F., Krska R., Schuhmacher R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, 2006, 20(18): 2649-2659 CrossRef
  45. Schenzel J., Forrer H.R., Vogelgsang S., Bucheli T.D. Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Research, 2012, 28(2): 135-147 CrossRef
  46. Uhlig S., Vikøren T., Ivanova L., Handeland K. Ergot alkaloids in Norwegian wild grasses: a mass spectrometric approach. Rapid Communications in Mass Spectrometry, 2007, 21(10): 1651-1660 CrossRef
  47. Gavrilova O.P., Orina A.S., Gogina N.N., Gagkaeva T.Yu. Rossiiskaya sel'skokhozyaistvennaya nauka, 2020, 6: 20-23 CrossRef (in Russ.).

 

back