БИОЛОГИЯ РАСТЕНИЙ
БИОЛОГИЯ ЖИВОТНЫХ
ПЕЧАТНАЯ ВЕРСИЯ
ЭЛЕКТРОННАЯ ВЕРСИЯ
 
КАК ПОДАТЬ РУКОПИСЬ
 
КАРТА САЙТА
НА ГЛАВНУЮ

 

 

 

 

doi: 10.15389/agrobiology.2020.5.956rus

УДК 635.153:577.152.31:577.151.64:582

 

ПОЛИМОРФИЗМ ЭСТЕРАЗНЫХ ИЗОФЕРМЕНТОВ В ЗРЕЛЫХ СЕМЕНАХ РЕДЬКИ ПОСЕВНОЙ (Raphanus sativus L.)

А.С. РУДАКОВА1, С.В. РУДАКОВ1, А.М. АРТЕМЬЕВА2, А.Б. КУРИНА2,
Н.В. КОЧЕРИНА3, Ю.В. ЧЕСНОКОВ3

Существующие внутривидовые классификации делят образцы редьки посевной (Raphanus sativus L.), проявляющие широкое разнообразие морфологических признаков, по географическому принципу в зависимости от региона происхождения (Европа, Китай, Япония). Вместе с тем известно, что в растениях комплекс ферментов, гидролизующих эфирные связи (эстеразный комплекс), имеет внутривидовую и тканевую специфичность. Ранее образцы из коллекций генетических ресурсов редьки посевной никогда не оценивались на наличие изоферментных форм эстераз в зрелых семенах этой культуры. Установление общей изменчивости изоферментных систем и выявление их генетического контроля позволяют вскрывать тонкие механизмы взаимоотношения организма с окружающей средой и гомеостаза, что особенно важно при длительном хранении образцов в генетических коллекциях семян. Существенное значение имеет и разработка эффективных биохимических маркеров для экспресс-оценки коллекционного, а также генетически и селекционно значимого материала. Проведение подобного рода работ позволяет восполнить пробел, существующий в отношении образцов генетических ресурсов редьки посевной. В настоящей работе мы впервые исследовали изоферментные формы эстераз в зрелых семенах редьки посевной и на основе полученных данных построили дендрограммы, определяющие филогенетические отношения образцов из мировой коллекции ВИР и соответствующие их ботаническому, агробиологическому и географическому положению. Была установлена средняя гетерозиготность изоферментных форм эстераз в изученных образцах и их дисперсия, указывающие на достоверность полученных результатов. Цель работы — оценить полиморфизм эстераз в зрелых семенах редьки, его зависимость от происхождения и агробиологической принадлежности образцов, а также возможность использования эстераз в качестве биохимических маркеров разнообразия вида Raphanus sativus L. Из коллекции Всероссийского института генетических ресурсов растений им. Н.И. Вавилова (ВИР) были отобраны 49 образцов редьки, принадлежащие к трем подвидам, разделенным по географическому принципу, — редька китайская, японская и европейская. Эстеразные изоферменты разделяли методом нативного электрофореза в полиакриламидном геле. Для обнаружения изоферментов гель отмывали в реактиве на неспецифическую эстеразу. Полученные зимограммы сканировали (EpsonExpression 10000XL, «GE Healthcare», США). Определяли гетерозиготность популяции Hl по каждому локусу, среднюю (общую) гетерозиготность Hобщ., дисперсии гетерозиготности Var(Hl) по каждому локусу и дисперсию средней гетерозиготности внутри популяции Var(Hобщ.).Основными морфологическими и фенологическими маркерами для внутривидового деления R. sativus на разновидности и сортотипы были форма и окраска корнеплода и продолжительность вегетационного периода. По своему эстеразному составу все образцы подразделились на 7 зимотипов, отличающихся наличием или отсутствием тех или иных зон. Всего в эстеразном комплексе семян редьки было обнаружено 5 основных изоферментов с разной молекулярной массой, варьирующей от 45,3 кД до 35,0 кД. Все пять зон характеризовались высокой степенью полиморфизма среди представленных образцов. В зимотип № 1, представленный максимальным количеством эстераз (пять зон), входили 43 % от общего числа генотипов. Зимотип № 2 составляли 33 % образцов. Самые редкие зимотипы № 5 и № 7 (4 %) имели минимальное количество эстеразных ферментов — по две зоны, зимотипы № 2 и № 4 — по четыре зоны, представители зимотипов № 3 и № 6 — по три зоны. Количественное соотношение эстеразных зон в образцах сильно варьировало. Минимальное содержание было выявлено для зоны В5 (4,78 %), максимальное (67,44 %) — для зоны В1. Степень распространенности каждой зоны среди образцов составляла от 13 до 23 %. Самыми часто встречающимися среди всех эстеразных изоферментов были зона В3 (Mr = 39,7 кД) и В4 (Mr = 37,1 кД), они наблюдались у 23 % генотипов. Для 22 % представителей была характерна зона В2 (Mr = 42,9 кД). Зоны В1 (Mr =45,3 кД) и В5 (Mr = 35 кД) встречались реже — 19 и 13 %. Средняя гетерозиготность изоферментных форм эстераз изученных образцов редьки составила Hобщ. = 0,212, дисперсия для тех же образцов Var(Hобщ.) = 0,0007. Кластерный анализ эстеразных ферментов разделил изученный набор образцов редьки на европейские и азиатские подвиды и разновидности, а в совокупности с фенотипическими признаками позволил построить дендрограмму, соответствующую ботаническому, агробиологическому и географическому положению образцов. Следует отметить, что образцы редьки европейского подвида расположились в двух кластерах, причем образцы российского происхождения формировали отдельную группу в первом кластере, а образцы европейского происхождения входили в третий кластер, включающий также японские редьки европейского происхождения. Возможно, такое деление связано с особенностями селекции этих образцов. На основании полученных данных эстеразные ферменты рекомендуются в качестве биохимических маркеров в генетико-селекционных экспериментах.

Ключевые слова: Raphanus sativus L., морфологические признаки, фенологические признаки, семена, эстеразы, изоформы, зимотипы, полиморфизм, биохимические маркеры, кластеризация.

 

 

POLYMORPHISM OF ESTERASE ISOENZYMES OF RIPE SEEDS OF SAMPLES OF RADISH (Raphanus sativus L.)

A.S. Rudakova1, S.V. Rudakov1, А.М. Artemyeva2, А.B. Kurina2,
N.V. Kocherina3, Yu.V. Chesnokov3

A biochemical approach was used to assess the genetic variability of the seed radish (Raphanus sativus L.) accessions which are distinguished by a wide variety of morphological characters. It is known that the esterase complex in plants has intraspecific specificity; in addition, these enzymes are characterized by tissue specificity. Earlier, the samples of the collections of the genetic resources of the radish were never evaluated for the presence of isozyme forms of esterases in mature seeds of this culture. The establishment of the general variability of isoenzyme systems and the identification of their genetic control make it possible to reveal the subtle mechanisms of the organism's relationship with the environment and homeostasis, which is especially important for long-term storage of samples in genetic seed collections. The development of effective biochemical markers for the rapid assessment of collection, as well as genetically and breeding significant material is also essential. This work allows us to fill the gap that exists in relation to the samples of genetic resources of the radish.  From the collection of the Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 49 radish accessions were selected, belonging to three subspecies, divided according to geographic principle as Chinese, Japanese and European radish. All esterase isozymes of seeds were separated using native vertical electrophoresis in polyacrylamide gel followed by processing for nonspecific esterase. According to their esterase composition, all accessions were subdivided into 7 zymotypes, differing from each other by the presence or absence of certain zones. In total, in the esterase complex of radish seeds, 5 main isozymes with different molecular weights varying from 45.3 kDa to 35.0 kDa were found. All five zones were characterized by a high level of polymorphism among the samples. Based on the composition of isozymes, all genotypes formed 7 zymotypes. Zymotype No. 1, represented by the maximum number of esterases (5 zones), comprised of 43 % of the total number of genotypes. Zymotype No. 2 constituted 33 % of all samples. The rarest zymotypes No. 5 and No. 7 (4 %) differed in the minimum amount of esterase enzymes (2 zones each). Zymotypes No. 2 and No. 4 were characterized by 4 zones. Representatives of two groups, No. 3 and No. 6 had 3 zones in their esterase complex. The quantitative ratio of all esterase zones varied greatly in the studied samples. The minimum content (4.78 %) was found for the B5 zone, the maximum amount (67.44 %) was found for the B1 zone. The prevalence of each zone among all studied samples ranged from 13 to 23 %. Zones B3 (Mr = 39.7 kDa) and B4 (Mr = 37.1 kDa) were the most common among all esterase isozymes; these zones were observed in 23 % of genotypes. For 22 % of representatives, the B2 zone was characteristic (Mr = 42.9 kD). Zones B1 (Mr = 45.3 kD) and B5 (Mr = 35 kD) were less common, 19 % and 13 %, respectively. The average heterozygosity of isozygous forms of esterases of the studied radish samples was Htotal = 0.212, with variance for the same samples Var(Htotal) = 0.0007. Cluster analysis of esterase enzymes divided the studied set of radish samples into European and Asian subspecies and varieties, and together with phenotypic traits, it allowed constructing a dendrogram corresponding to the botanical, agrobiological and geographical location of the samples. It should be noted that the accessions of the European subspecies radish are located in two clusters, and the accessions of Russian origin form a separate group in the first cluster, and the samples of European origin are grouped in the third cluster which also includes Japanese radishes of European origin. Perhaps this division is associated with the peculiarities of the selection process in creating these samples. Based on the data obtained, esterase enzymes are recommended as biochemical markers in genetic selection experiments.

Keywords: Raphanus sativus L., morphological characters, phenological characters, seeds, esterases, isoforms, zymotypes, polymorphism, biochemical markers, clustering.

 

1Universitatea de Stat din Moldova,
Republic of Moldova, MD-2009, Chişinău, Mateevich str., 60,
e-mail: rud-as@mail.ru, rudacov@yahoo.com;
2ФГБНУ ФИЦ Всероссийский институт
генетических ресурсов растений им. Н.И. Вавилова,
190000 Россия, г. Санкт-Петербург, ул. Большая Морская, 42-44,
e-mail: akme11@yandex.ru, nastya_n11@mail.ru;
3ФГБНУ Агрофизический научно-исследовательский
институт
,
195220 Россия, г. Санкт-Петербург, Гражданский просп., 14,
e-mail: alle007@mail.ru, yuv_chesnokov@agrophys.ru

Поступила в редакцию
21 июня 2020 года

 

назад в начало

 


СОДЕРЖАНИЕ

 

 

Полный текст PDF

Полный текст HTML