PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.861eng

UDC: 635.1.7:631.52

 

FEDERAL RESEARCH CENTER FOR VEGETABLE GROWING — 100-YEAR HISTORY AS A BASIS FOR FUTURE DEVELOPMENTS (review)

V.F. Pivovarov, A.V. Soldatenko, O.N. Pyshnaya , L.K. Gurkina

Federal Research Center for Vegetable Growing, 14, ul. Selektsionnaya, pos. VNIISSOK, Odintsovskii Region, Moscow Province, 143072 Russia, e-mail pivovarov@vniissok.ru, alex-soldat@mail.ru, pishnaya_o@mail.ru (corresponding author ), lub_09@mail.ru

ORCID:
Pivovarov V.F. orcid.org/0000-0001-9522-8072
Pyshnaya O.N. orcid.org/0000-0001-9744-2443
Soldatenko A.V. orcid.org/0000-0002-9492-6845
Gurkina L.K. orcid.org/0000-0002-8384-2857

Received March 30, 2020

 

The review presents the history of the Gribovskaya Vegetable Breeding Experimental Station, the first in Russia and the USSR for vegetable breeding and seed production, on the basis of which the All-Russian Research Institute of Vegetable Breeding and Seed Production was established, farther reorganized into the Federal Research Center for Vegetable Growing. The center’s activity dates back to 1920, when, under the leadership of Sergei I. Zhegalov, a theoretical and practical basis for the development of domestic breeding was laid. The century-old anniversary of the selection of vegetable crops allows us to trace the way of its formation in Russia, successes and future development. Since 1920, scientists paid much attention to the development and improvement of breeding methods that increase the efficiency of selection, as well as to accelerate the selection process to create targeted varieties and hybrids. With regard to the main vegetable crops, methods have been developed for interspecific hybridization (N.I. Timin et al., 2013; A.F. Agafonov et al., 2018), molecular labeling (T.P. Suprunova et al., 2011; E.A. Domblides et al., 2015), clonal micropropagation and production of doubled haploids successfully used in breeding (M.S. Bunin et al., 2004). Basic protocols have been proposed for in vitro culture of microspore for most cabbage crops (E.A. Domblides et al., 2016) and non-pollinated ovules for Cucurbitaceae (N.A. Shmykova et al., 2015). A technology has been developed for the production of doubled haploids in carrots in in vitro cultures of anthers, non-pollinated ovules and microspores (T.S. Wurtz et al., 2016). The economic benefit of modern biotechnological in vitro methods when creating hybrids has been proven: the time for creating hybrids is reduced from 12 to 6 years, financial costs are reduced 2 times (A. Mineikina et al., 2019; T. Vurtz et al., 2019). The aggravated situation with plant diseases and the expansion of the areas of new harmful pathogens on vegetable crops are discussed. Based on immunological, molecular and morphophysiological tests at artificial, provocative and natural infections, the sources of resistance to economically significant diseases are identified, in cabbage to Plasmodiophora brassicae, in table beet to Cercospora beticola, in vegetable beans to viral diseases, in onions to Peronospora destructor (I.A. Engalycheva et al., 2019). Physiological and biochemical methods are widely used when creating varieties with a high content of biologically active substances and antioxidants. Technologies have been developed for obtaining functional food products, including new types of teas with a therapeutic and prophylactic effect, soft drinks, food dyes, and confectionery (M.S. Gins et al., 2017). Recipes for gluten-free bakery products have been created using introduced yacon, amaranth and daikon cultures. Technologies for selenium enrichment of vegetable crops for fresh consumption and as raw materials for functional products have been developed (N.A. Golubkina et al., 2018). The intellectual potential accumulated over a hundred-year history is inextricably linked with the traditions laid down at the experimental station. Nowadays the Federal Research Center for Vegetable Growing coordinates scientific research on the selection, production and processing of vegetable and melon crops in Russia within the framework of state programs for the development of the industry and ensuring food security.

Keywords: history, anniversary, research, varieties, vegetables, breeding, biotechnology, immunity, molecular marking, biochemistry, functional products.

 

REFERENCES

  1. Selektsiya i semenovodstvo ovoshchnykh kul'tur na Gribovskoi opytnoi stantsii za 50 let /Pod redaktsiei Z.V. Kuptsovoi [Selection and seed production of vegetable crops at the Gribovskaya experimental station for 50 years. Z.V. Kuptsovа (ed.)]. Moscow, 1970 (in Russ.).
  2. Emsweller S.L., Jones H.A. An interspecific hybrid in Allium L. Hitgardis,1935, 5(9): 265-273.
  3. Timin N.I., Pyshnaya O.N., Agafonov A.F., Mamedov M.I., Titova I.V., Kan L.Yu., Logunova V.V., Romanov V.S., Shmykova N.A., Timina L.T., Gurkina L.K., Dzhos E.A., Suprunova T.P., Krivosheev S.M., Engalycheva I.A. Mezhvidovaya gibridizatsiya ovoshchnykh rastenii (Allium L. — luk, Daucus L. — morkov', Capsicum L. — perets) /Pod redaktsiei V.F. Pivovarova [Interspecific hybridization of vegetable plants (Allium L. — onion, Daucus L. — carrot, Capsicum L. — pepper). V.F. Pivovarov (ed.)]. Moscow, 2013 (in Russ.).
  4. Agafonov A.F., Logunova V.V., Gurkina L.K. Ovoshchi Rossii, 2018, 4(42): 3-5 CrossRef (in Russ.).
  5. Umehara M., Sueyoshi T., Shimomura K., Iwai M., Shigyo M., Hirashima K., Nakahara T. Interspecific hybrids between Allium fistulosum and Allium schoenoprasum reveal carotene-rich phenotype. Euphytica, 2006, 148(3): 295-301 CrossRef
  6. Hirschegger P., Jakše J., Trontelj P., Bohanec B. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Molecular Phylogenetics and Evolution, 2010, 54(2): 488-497 CrossRef
  7. Scholten O.E., van Kaauwen M.P.W., Shahin A., Hendrickx P.M., Keizer L.C.P., Burger K., van Heusden A.W., van der Linden C.G., Vosman B. SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biology, 2016, 16(1): 187-196 CrossRef
  8. Ariyanti N.A., Hoa V.Q., Khrustaleva L.I., Hirata S., Abdelrahman M., Ito S., Yamauchi N., Shigyo M. Production and characterization of alien chromosome addition lines in Allium fistulosum carrying extra chromosomes of Allium roylei using molecular and cytogenetic analyses. Euphytica, 2015, 206(2): 343-355 CrossRef
  9. Kan L.Yu. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 131-oi godovshchine so dnya rozhdeniya akademika N.I. Vavilova «Vavilovskie chteniya — 2018» [Proc. Int. Conf. «Vavilov Readings-2018»]. Moscow, 2018: 59-63 (in Russ.).
  10. Suzuki G., Ogaki Y., Hokimoto N., Xiao L., Kikuchi-Taura A., Harada C., Okayama R., Tsuru A., Onishi M., Saito N., Do G.S., Lee S.H., Ito T., Kanno A., Yamamoto M., Mukai Y. Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Rep., 2012, 31(4): 621-628 CrossRef
  11. Korottseva I.B. Ovoshchi Rossii, 2015, 3(28): 54-57 CrossRef (in Russ.).
  12. Khimich G.A., Korottseva I.B., Gins M.S., Gins V.K., Baikov A.A. Novye i netraditsionnye rasteniya i perspektivy ikh ispol'zovaniya, 2016, 12: 271-273 (in Russ.).
  13. Kotlyar I.P., Ushakov V.A., Kaigorodova I.M., Pronina E.P. Ovoshchi Rossii, 2019, 2(46): 34-38 CrossRef (in Russ.).
  14. Pivovarov V.F., Pronina E.P. Ovoshchi Rossii, 2013, 1(18): 4-11 CrossRef (in Russ.).
  15. Pronina E.P., Ushakov V.A., Kotlyar I.P., Soldatenko A.V. Ovoshchi Rossii, 2019, 6: 50-52 CrossRef (in Russ.).
  16. SHimanskii L.P., Kopylovich V.L., Sikorskii A.V., Sirota S.M., Agafonov A.F., Pronina E.P. Ovoshchi Rossii, 2014, 4(25): 23-27 CrossRef (in Russ.).
  17. Logunova V.V., Krivenkov L.V., Gurkina L.K., Grashchenkova N.N. Izvestiya FNTSO, 2019, 2: 45-49 CrossRef (in Russ.).
  18. Bondareva L.L. Ovoshchi Rossii, 2017, 1(34): 22-23 CrossRef (in Russ.).
  19. Fedorova M.I., Stepanov V.A. Ovoshchi Rossii, 2017, 4(37): 16-22 CrossRef (in Russ.).
  20. Gins M.S., Gins V.K. Fiziologo-biokhimicheskie osnovy introduktsii i selektsii ovoshchnykh kul'tur [Physiological and biochemical bases of the introduction and selection of vegetable crops]. Moscow, 2011 (in Russ.).
  21. Hasler C.M., Bloch A.S., Thomson C.A., Enrione E., Manning C. Position of the American dietetic association: functional foods. Journal of the American Dietetic Association, 2004, 104(5): 814-826 CrossRef
  22. Martirosyan D.M. Functional foods and chronic diseases: science and practice (volume 8). Oxford, 2011.
  23. Lewandowska U., Szewczyk K., Hrabec E., Janecka A., Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem., 2013, 61(50): 12183-12199 CrossRef
  24. European Commission. Functional foods. Brussels, 2010 CrossRef
  25. Mudry J. Functional foods, marketing of. In: Encyclopedia of food and agricultural ethics. P.B. Thompson, D.M. Kaplan (eds.). Springer, Dordrecht, 2014 CrossRef
  26. Woo K.S., Hwang I.G., Kim T.M., Kim D.J., Hong J.T., Jeon H.S. Changes in the antioxidant activity of onion (Allium cepa) extracts with heat treatment. Food Sci. Biotechnol., 2007, 16(5): 828-831.
  27. Ficco D.B.M., de Simone V., Colecchia S.A., Pecorella I., Platani C., Nigro F., Finocchiaro F., Papa R., de Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem., 2014, 62(34): 8686-8695 CrossRef
  28. Zhang Z., Lei M., Liu R., Gao Y., Xu M., Zhang M. Evaluation of alliin, saccharide contents and antioxidant activities of black garlic during thermal processing. Journal of Food Biochemistry, 2015, 39(1): 39-47 CrossRef
  29. Adzhieva V.F., Babak O.G., Shoeva O.Y., Kilchevsky A.V., Khlestkina E.K. Molecular genetic mechanisms of the development of fruit and seed coloration in plants. Russian Journal of Genetics: Applied Research, 2016, 6(5): 537-552 CrossRef
  30. Gins M.S., Gins V.K., Kononkov P.F. Vestnik Rossiiskoi sel'skokhozyaistvennoi nauki, 2016, 2: 55-58 (in Russ.).
  31. Gins M.S., Romanova E.V., Plyushchikov V.G., Gins V.K., Pivovarov V.F. Funktsional'nyeproduktypitaniyaizrastitel'nogosyr'ya[Functional plant-based foods]. Moscow, 2017 (in Russ.).
  32. Kryachko T.I., Malkina V.D., Martirosyan V.V., Smirnova S.A., Golubkina N.A., Bondareva L.L. Izvestiya vysshikh uchebnykh zavedenii. Pishchevaya tekhnologiya, 2019, 1(367): 22-26 (in Russ.).
  33. Malkina V.D., Kryachko T.I., Martirosyan V.V., Golubkina N.A., Seredin T.M., Pavlov L.V. Konditerskoe i khlebopekarnoe proizvodstvo, 2019, 3-4(180): 31-35 (in Russ.).
  34. Golubkina N.A., Seredin T.M., Koshevarov A.A., Shilo L.M., Baranova E.V., Pavlov L.V. Mikroelementy v meditsine, 2018, 19(1): 43-50 CrossRef (in Russ.).
  35. Pethybridge S.J., Kikker J.R., Hanson L.E., Nelson S.C. Challenges and prospects for building resilient disease management strategies and tactics for the New York table beet industry. Agronomy, 2018, 8(7): 112 CrossRef
  36. West J.S., Townsend J.A., Stevens M., Fitt B.D.L. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 2012, 133(1): 315-331 CrossRef
  37. Sanin S.S. V sbornike: Plodovodstvo i yagodovodstvo Rossii [In: Fruit and berry growing in Russia]. Moscow, 2015, Iss. 43: 178-183 (in Russ.).
  38. Velasquez A.C., Castroverde C.D.M., He S.Y.  Plant—pathogen warfare under changing climate conditions. Current Biology, 2018, 28(10): R619-R634 CrossRef
  39. Ryabushkina N.A. Biotekhnologiya. Teoriya i praktika, 2005, 5: 5-15 (in Russ.).
  40. Chen J., Shang Y.-T., Wang W.-H. Chen X.-Y., He E.-M., Zheng H.-L., Shangguan Z. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Frontiers in Plant Science, 2016, 7: 1173 CrossRef
  41. Timina L.T., Engalycheva I.A. Selektsiya i semenovodstvo ovoshchnykh kul'tur, 2014, 45: 530-539 (in Russ.).
  42. Agafonov A.F., Timina L.T., Shestakova K.S. Ovoshchi Rossii, 2012, 3(16): 48-51 (in Russ.).
  43. Nayuolu M.V. Plant viruses. India, 2007.
  44. Makkouk K.M., Kumari S.G. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa. Virus Research, 2009, 141(2): 209-218 CrossRef
  45. Hampton R.O., Jensen A., Hagel G.T. Attributes of bean yellow mosaic potyvirus transmission from clover to snap beans by four species of aphids (Homoptera: Aphididae). Journal of Economic Entomology, 2005, 98(6): 1816-1823 CrossRef
  46. Engalycheva I.A., Pavlova O.V. Vestnik zashchity rastenii, 2016, 3(89): 68-70 (in Russ.).
  47. Engalycheva I.A., Kozar' E.G. Agrarnaya nauka, 2019, S3: 79-85 CrossRef (in Russ.).
  48. Almási A., Csilléry G., Csömör Z., Nemes K., Palkovics L., Salánki K., Tóbiás I. Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper. Virus Genes, 2015, 50(1): 71-78 CrossRef
  49. Scholthof K.B.G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C., Foster G.D. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 2011, 12(9): 938-954 CrossRef
  50. Yu L., Zhang C., Shang H., Wang X., Wei M., Yang F., Shi Q. Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. Journal of Integrative Agriculture, 2013, 12(3): 445-456 CrossRef
  51. Janicka M., Reda M., Czyzewska K., Kabała K. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Functional Plant Biology, 2018, 45(4): 428-439 CrossRef
  52. Ushakov A.A., Kozar' E.G., Engalycheva I.A. Ovoshchi Rossii, 2019, 6: 133-140 CrossRef (in Russ.).
  53. Ushakov A.A., Bondareva L.L., Engalycheva I.A. Ovoshchi Rossii, 2018, 6(44): 97-100 CrossRef (in Russ.).
  54. Kozar' E.G., Vetrova S.A., Engalycheva I.A., Fedorova M.I. Ovoshchi Rossii, 2019, 6: 124-132 CrossRef (in Russ.).
  55. Pivovarov V.F., Dobrutskaya E.G. Ekologicheskie osnovy selektsii i semenovodstva ovoshchnykh kul'tur [Ecological bases of selection and seed production of vegetable crops]. Moscow, 2000 (in Russ.).
  56. Polyakov A.V., Azopkova M.A., Lebedeva N.N., Murav'eva I.V. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: estestvennye nauki, 2018, 4: 115-124 CrossRef (in Russ.).
  57. Bunin M.S., Shmykova N.A. Ispol'zovanie biotekhnologicheskikh metodov dlya polucheniya iskhodnogo selektsionnogo materiala kapusty [The use of biotechnological methods to obtain the initial breeding material of cabbage]. Moscow, 2004 (in Russ.).
  58. Verba V.M., Mamedov M.I., Pyshnaya O.N., Shmykova N.A. Vestnik RASKHN, 2010, 6: 57-59 (in Russ.).
  59. Verba V.M., Mamedov M.I., Pyshnaya O.N., Suprunova T.P., Shmykova N.A. Isolation of eggplant interspecific hybrids by the method of embryo culture. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 45(5): 66-71 (in Engl.">CrossRef
  60. Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D. A haploid mutant in the jimson weed, «Datura stramonium». Science, 1922, 55(1433): 646-647 CrossRef
  61. Maluszynski M., Kasha K.J., Szarejko I. Published doubled haploid protocols in plant species. In: Doubled haploid production in crop plants. M. Maluszynski, K.J. Kasha, B.P. Forster, I. Szarejko (eds.). Springer, Dordrecht, 2003: 309-335 CrossRef
  62. Forster B.P., Heberle-Bors E., Kasha K.J., Touraev A. The resurgence of haploids in higher plants. Trends in Plant Science, 2007, 12(8): 368-375 CrossRef
  63. Advances in haploid production in higher plants. A. Touraev, B.P. Forster, S.M. Jain (eds.). Netherlands, 2009 CrossRef
  64. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 2010, 8(4): 377-424 CrossRef
  65. Germanà M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 2011, 30(5): 839-857 CrossRef
  66. Tyukavin G.B. Osnovy biotekhnologii morkovi [Carrot biotechnology basics]. Moscow, 2007 (in Russ.).
  67. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift fur Pflanzenphysiologie, 1982, 105(5): 427-434 CrossRef
  68. Pechan P.M., Keller W.A. Identification of potentially embryogenic microspores in Brassica napus. Physiologia Plantarum, 2006, 74(2): 377-384 CrossRef
  69. Seo M., Sohn S., Park B., Ko H., Jin M. Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions. Journal of Plant Biotechnology, 2014, 41(3): 116-122 CrossRef
  70. Reeta B., Dey S.S., Parkash C., Sharma K., Sood S., Kumar R. Modification of important factors for efficient microspore embryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Scientia Horticulturae, 2018, 233: 178-187 CrossRef
  71. Ferrie A.M.R. Microspore culture of Brassica species. In: Doubled haploid production in crop plants. M. Maluszynski, K.J. Kasha, B.P. Forster, I. Szarejko (eds.). Springer, Dordrecht, 2003: 205-215 CrossRef
  72. Smýkalová I., Větrovcová M., Klíma M., Macháčková M., Griga M. Efficiency of microspore culture for doubled haploid production in the breeding project «Czech Winter Rape». Czech Journal of Genetics and Plant Breeding, 2006, 42(2): 58-71 CrossRef
  73. Domblides E.A., Shmykova N.A., Shumilina D.V., Zayachkovskaya T.V., Mineikina A.I., Kozar' E.V., Akhramenko V.A., Shevchenko L.L., Kan L.Yu., Bondareva L.L., Domblides A.S. Tekhnologiya polucheniya udvoennykh gaploidov v kul'ture mikrospor semeistva kapustnye: metodicheskie rekomendatsii [The technology for obtaining doubled haploids of Brassicaceae family in the culture of microspores: guidelines]. Moscow, 2016 (in Russ.).
  74. Pivovarov V.F., Bondareva L.L., Shmykova N.A., Shumilina D.V., Mineikina A.I. New generation hybrids of white cabbage (Brassica oleracea L. convar. capitata var. alba DC) based on doubled haploids. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 1(52): 143-151 CrossRef
  75. Korottseva K.S., Domblides E.A., Domblides A.S. Materialy konferentsii «Biotekhnologiya v rastenievodstve, zhivotnovodstve i sel'skokhozyaistvennoi mikrobiologii» [Proc. Conf. “Biotechnology in crop production, animal husbandry and agricultural microbiology”]. Moscow, 2019, 17-19 (in Russ.).
  76. Domblides E.A., Kozar' E.V., Shumilina D.V., Zayachkovskaya T.V., Akhramenko V.A., Soldatenko A.V. Ovoshchi Rossii, 2018, 1(39): 3-7 CrossRef (in Russ.).
  77. Zablotskaya E.A., Bondareva L.L., Sirota S.M. Ovoshchi Rossii, 2018, 1(39): 8-11 CrossRef (in Russ.).
  78. Shumilina D., Kornyukhin D., Domblides E., Soldatenko A., Artemyeva A. Impact of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa L. ssp. rapa. Plants, 2020, 9(2): 278 CrossRef
  79. Kozar' E.V., Korottseva K.S., Romanova O.V., Chichvarina O.A., Kan L.Yu., Akhramenko V.A., Domblides E.A. Ovoshchi Rossii, 2019, (6): 3-7 CrossRef (in Russ.).
  80. Domblides E.A., Chichvarina O.A., Mineikina A.I., Kurbakov E.L., Kharchenko V.A., Domblides A.S., Soldatenko A.V. Ovoshchi Rossii, 2019, 4: 8-12 CrossRef (in Russ.).
  81. Kozar' E.V., Domblides E.A., Soldatenko A.V. Vavilovskii zhurnal genetiki i selektsii, 2020, 24(1): 31-39 CrossRef (in Russ.).
  82. Matsubara S., Dohya N., Murakami K. Callus formation and regeneration of adventitious embryos from carrot, fennel and mitsuba microspores by anther and isolated microspore cultures. Acta Horticulturae, 1995, 392: 129-138 CrossRef
  83. Kiszczak W., Kowalska U., Kapuścińska A., Burian M., Górecka K. Comparison of methods for obtaining doubled haploids of carrot. Acta Societatis Botanicorum Poloniae, 2017, 86(2): 3547 CrossRef
  84. Li J.-R., Zhuang F.-Y., Ou C.-G., Hu H., Zhao Z.-W., Mao J.-H. Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell Tiss. Organ Cult., 2013, 112: 275-287 CrossRef
  85. Vyurtts T.S., Shmykova N.A., Fedorova M.I., Zayachkovskaya T.V., Domblides E.A. Vestnik zashchity rastenii, 2016, 3(89): 43-44 (in Russ.).
  86. Mineikina A., Bondareva L., Domblides E. The economic benefits of the production of double haploid for selection of white cabbage. IOP Conference Series: Earth and Environmental Science,2019, 395: 012081 CrossRef
  87. Vurtz T., Domblides E., Soldatenko A. Economic efficiency of obtaining carrot lines using classical and biotechnological methods. IOP Conference Series: Earth and Environmental Science, 2019, 395: 012084 CrossRef
  88. Shmykova N.A., Khimich G.A., Korottseva I.B., Domblides E.A. Ovoshchi Rossii, 2015, 3(28): 28-31 CrossRef (in Russ.).
  89. Domblides E.A., Shmykova N.A., Zayachkovskaya T.V., Khimich G.A., Korottseva I.B., Kan L.Yu., Domblides A.S. V sbornike: Biotekhnologiya kak instrument sokhraneniya bioraznoobraziya rastitel'nogo mira (fiziologo-biokhimicheskie, embriologicheskie, geneticheskie i pravovye aspekty) [Biotechnology as a tool for preserving the biodiversity of the plant world (physiological, biochemical, embryological, genetic and legal aspects)]. Simferopol', 2016: 28-29 (in Russ.).
  90. Domblides EA., Shmykova N.A., Belov S.N., Korottseva I.B., Soldatenko A.V. Ovoshchi Rossii, 2019, 6: 3-9 CrossRef (in Russ.).
  91. Chen J., Vanek E., Pieper M. Method for producing haploid, dihaploid and doubled haploid plants by isolated microspore culture. A01H 1/00 (2006.01). Application filed by Vilmorin and Cie (FR). № PCT/EP20 16/067825. Priority data 26.07.2016. Publication 02.02.2017 WO 2017/017108A1.
  92. Lofti M., Alan A.R., Henning M.J., Jahn M.M., Earle E.D. Production of haploid and double haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep.,2003, 21(11): 1121-1128 CrossRef
  93. Baktemur G., Taşkın H., Buyukalaca S. Comparison of different methods for separation of haploid embryo induced through irradiated pollen and their economic analysis in melon (Cucumis melo var. inodorus). The Scientific World Journal,2013, 10: 529502 CrossRef
  94. Galązka J., Niemirowicz-Szczytt K. Review of research on haploid production in cucumber and other cucurbits. Folia Horticulturae, 2013, 25(1): 67-78 CrossRef
  95. Galazka J., Slomnicka R., Goral-Radziszewska K., Niemirowicz-Szczytt K. From pollination to DH-lines — verification and optimization of protocol for production of double haploids in cucumber. Acta Scientiarum Polonorum Hortorum Cultus, 2015, 14(3): 81-92.
  96. Domblides E.A., Shmykova N.A., Khimich G.A., Korottseva I.B., Domblides A.S. Ovoshchi Rossii, 2018, 5(43): 13-17 CrossRef (in Russ.).
  97. Domblides E.A., Kan L.Yu., Khimich G.A., Korottseva I.B., Domblides A.S. Ovoshchi Rossii, 2018, 6(44): 3-7 CrossRef (in Russ.).
  98. Kochieva E.Z., Suprunova T.P. Identification of inter- and intraspecific polymorphism in tomato. Genetika, 1999, 35(10): 1386-1389.
  99. Domblides E.A., Domblides A.S., Zayachkovskaya T.V., Bondareva L.L. Vavilovskii zhurnal genetiki i selektsii,2015, 19(5): 529-537 CrossRef (in Russ.).
  100. Pyshnaya O.N., Mamedov M.I., Shmykova N.A., Shumilina D.V., Suprunova T.P., Dzhos E.A., Matyukina A.A. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2015, 55: 213-216 (in Russ.).
  101. Suprunova T.P., Logunov A.N., Logunova V.V., Agafonov A.F. Ovoshchi Rossii, 2011, 4(13): 20-21 (in Russ.).
  102. Domblides A.S. Ovoshchi Rossii, 2019, 5: 15-19 CrossRef (in Russ.).
  103. Khimich G.A. Ovoshchi Rossii, 2016, 1(30): 48-49 CrossRef (in Russ.).
  104. Pivovarov V.F., Shmykova N.A., Bondareva L.L., Zablotskaya E.A. Vestnik Rossiiskoi sel'skokhozyaistvennoi nauki, 2015, 5: 33-35 (in Russ.).

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)