PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.1018eng

UDC: 631.4:579:577.2

Acknowledgements:
The work was carried out using the equipment of the “Chemical Analysis and Materials Research Center” of the SPbSU Science Park. Supported financially from Russian Science Foundation (project No. 19-16-00049)

 

SOILS OF CHERNEVAYA TAIGA OF WESTERN SIBERIA — MORPHOLOGY, AGROCHEMICAL FEATURES, MICROBIOTA

E.V. Abakumov1 , S.V. Loyko2, 3, G.I. Istigechev2, A.I. Kulemzina4,
N.N. Lashchinskiy5, E.E. Andronov6, 7, A.L. Lapidus1, 8

1Saint-Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034 Russia, e-mail e_abakumov@mail.ru (✉ corresponding author);
2National Research Tomsk State University, 36, pr. Lenina, Tomsk, 634050 Russia, e-mail s.loyko@yandex.ru;
3Agrophysical Research Institute, 14, Grazhdanskiy pr., St. Petersburg, 195220 Russia;
4Institute of Molecular and Cellular Biology, 8/2, pr. Academika Lavrentieva, Novosibirsk, 630090 Russia, e-mail zakal@mcb.nsc.ru;
5Central Siberian Botanical Garden, Siberian Branch RAS, 101, ul. Zolotodolinskaya, Novosibirsk, 630090 Russia, e-mail nnl630090@gmail.com;
6All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail eeandr@gmail.com;
7Dokuchaev Soil Science Institute, 7/2, Pyzhyovskiy per., Moscow, 397463 Russia;
8Saint-Petersburg State University, Center for Algorithmic Biotechnology, 7-9, Universitetskaya nab., St. Petersburg, 199034 Russia, e-mail a.lapidus@spbu.ru (✉ corresponding author)

ORCID:
Abakumov E.V. orcid.org/0000-0002-5248-9018
Lashinskii N.N. orcid.org/0000-0003-1085-1987
Loyko S.V. orcid.org/0000-0003-2020-4716
Andronov E.E. orcid.org/0000-0002-5204-262X
Istigechev G.I. orcid.org/0000-0002-8387-5341
Lapidus A.L. orcid.org/0000-0003-0427-8731
Kulemzina A.I. orcid.org/0000-0002-6791-5120

Received May 17, 2020

 

The soils of Chernevaya taiga are unique in terms of high fertility that was formed not as a result of agricultural practices, but due to the combination of a huge volume of biotic and abiotic resources. This area was able to preserve its “pre-agricultural” level of fertility overtime by avoiding the negative consequences of long-standing agricultural usage. Comprehensive analysis of all related properties within the framework of a metagenomic study and identification of microbial drivers of fertility can become the basis for innovative technologies aimed to increase the productivity of soils and crops. In this work, for the first time were obtained data on the taxonomic structure and features of the of the microbiota of soils in the Chernevaya taiga and identified taxa, the number of which significantly increases with the transition from the background zonal soil to the soil of Chernevaya taiga. Analysis of soil samples collected during expeditionary surveys in 2019 showed that the soils in the Western Siberia (Novosibirsk, Tomsk, Kemerovo, and Altai regions) portion of the Chernevaya taiga are texture-differentiated dark gray soils (clay loam and silt clay varieties confined to the deluvial cover of the Holocene and Late Pleistocene) that were formed as a result of a unique combination of geogenic and bioclimatic conditions. These soils are not affected by the permafrost in winter timers and are supplied with enough moisture to precipitate rapid mineralization of litter material and the fixation of mineral nutrients in the upper humus layer of the soil profile. The accumulation of nutrients is an essential property of the soils of the Chernevaya taiga associated with the phenomenon of gigantism and extremely high levels of plant productivity. The soils of Chernevaya taiga contain the maximum amount of carbon in organic compounds compared with soils of oligotrophic habitats (9.85% versus 2.74%). The levels of actual soil fertility in the soils of the Chernevaya taiga are several times higher than in the soils of adjacent biotopes (the maximum content of the exchange forms of phosphorus and potassium is 702 and 470 mg/kg), which, when compared to oligotrophic forests, are poor in terms of agrochemical fertility (the maximum content of the exchange forms of phosphorus and potassium is 113 and 18 mg/kg), do not have a pronounced humus profile and are either gray-humus (Umbrisol) or Podzol types according to substantive-profile classification of Russian soils. The diversity of microorganisms in the studied soils varies depending on the trophic regime of the ecosystem. The soils of the Chernevaya taiga are characterized by an increased diversity of the microbial community (estimated by the Shannon index), as well as by presence of phyla Nitrospirae and Thaumarchaeota, that, however, are not dominant. Phyla Proteobacteria, Verrucomicrobia, Actinobacteria, Acidobacteria, Planctomycetes, Firmicutes appeared to be common for all studied soils.

Keywords: soil ecological functions, Chernevaya taiga, microbial communities, NGS, fertility factors, Western Siberia.

 

REFERENCES

  1. Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. Human domination of Earth’s ecosystems. Science, 1997, 277(5325): 494-499 CrossRef
  2. Clark C. M., Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451(7179): 712 CrossRef
  3. Diaz R.J., Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891): 926-929 CrossRef
  4. Marques A., Martins I.S., Kastner T., Plutzar C., Theurl M.C., Eisenmenger N., Huijbregts M.A.J., Wood R., Stadler K., Bruckner M., Canelas J., Hilbers J.P., Tukker A., Erb K., Pereira H.M. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3(4): 628-637 CrossRef
  5. Tilman D. Biodiversity and environmental sustainability amid human domination of global ecosystems. Daedalus, 2012, 141(3): 108-120 CrossRef
  6. Song X.-P., Hansen M.C., Stehman S.V., Potapov P.V., Tyukavina A., Vermote E.F., Townshend J.R. Global land change from 1982 to 2016. Nature, 2018, 560(7720): 639-643 CrossRef
  7. Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N., Snyder P.K. Global consequences of land use. Science, 2005, 309(5734): 570-574 CrossRef
  8. Davidson E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659-662 CrossRef
  9. Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K.W.T., Vitousek P.M., Zhang F.S. Significant acidification in major chinese croplands. Science, 2010, 327(5968): 1008-1010 (doi:10.1126/science.1182570">CrossRef
  10. Gomiero T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability (Switzerland), 2016, 8(3): article № 281 CrossRef
  11. Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. Soil and the intensification of agriculture for global food security. Environment International, 2019, 132: article № 105078 CrossRef
  12. Di H.J., Cameron K.C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 2002, 64(3): 237-256 CrossRef
  13. Sebilo M., Mayer B., Nicolardot B., Pinay G., Mariotti A. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185-18189. CrossRef
  14. Wang Y., Ying H., Yin Y., Zheng H., Cui Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Science of the Total Environment, 2019, 657: 96-102 CrossRef
  15. Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677 CrossRef
  16. Castellano M.J., David M.B. Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): E766 CrossRef
  17. Kalinicheva E.Yu., Pol'shakova N.V., Kolomeichenko A.S. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta. 2017, 3(66): 121-128 (in Russ.).
  18. Ramankutty N., Foley J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 1999, 13(4): 997-1027 CrossRef
  19. Kryshnyaya S.V. Vestnik Sakhalinskogo muzeya, 2011, 17: 338-356 (in Russ.).
  20. Bobrovskii M.V. Lesnye pochvy Evropeiskoi Rossii [Forest soils of the European Russia]. Moscow, 2010 (in Russ.).
  21. Smirnova O.V., Lugovaya D.L., Prokazina T.S. Uspekhi sovremennoi biologii, 2013, 2: 164-177 (in Russ.).
  22. Smirnova O.V., Shashkov M.P., Korotkov V.N., Shirokov A.I. Priroda, 2008, 12: 20-24 (in Russ.).
  23. Smirnova O.V., Aleinikov A.A., Smirnov N.S., Lugovaya D.L. Priroda, 2014, 2: 54-63 (in Russ.).
  24. Tishkov A.A. Voprosy geografii, 2012, 134: 15-57 (in Russ.).
  25. Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody /Otvetstvennyi redaktor A.S. Isaev [Monitoring of forest biological diversity in Russia: methodology and methods. A.S. Isaev (ed.)]. Moscow, 2008 (in Russ.).
  26. Taranov S.A. V kn.: Lesnye pochvy gornogo okaimleniya yugo-vostoka Zapadnoi Sibiri (Vostochnyi Altai, Gornaya Shoriya, Salair) /Otvetstvennyi redaktor R.V. Kovalev [In: Forest soils of mountain bordering in the southeast of Western Siberia (Eastern Altai, Gornaya Shoria, Salair)]. Novosibirsk, 1974: 75-132 (in Russ.).
  27. Babenko A.S., Nefed'ev P.S., Nefed'eva Yu.S. Vestnik Tomskogo gosudarstvennogo universiteta,2009, 319:182-185 (in Russ.).
  28. Fierer N., Strickland M.S., Liptzin D., Bradford M.A., Cleveland C.C. Global patterns in belowground communities. Ecology Letters, 2009, 12(11): 1238-1249 CrossRef
  29. Delgado-Baquerizo M., Oliverio A.M., Brewer T.E., Benavent-González A., Eldridge D.J., Bardgett R.D., Maestre F.T., Singh B.K., Fierer N. A global atlas of the dominant bacteria found in soil. Science,2018, 359(6373): 320-325 CrossRef
  30. Lundberg D.S., Lebeis S.L., Paredes S.H., Yourstone S., Gehring J., Malfatti S., Tremblay J., Engelbrektson A., Kunin V., del Rio T.G., Edgar R.C., Eickhorst T., Ley R.E., Hugenholtz P., Tringe S.G., Dangl J.L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488: 86-90 CrossRef
  31. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 2011, 5: 908-917 CrossRef
  32. Martin V. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 2011, 17(1): 10-12 CrossRef
  33. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 2016, 13: 581-583 CrossRef
  34. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(D1): D590-D596 CrossRef
  35. Janssen S., McDonald D., Gonzalez A., Navas-Molina J.A., Jiang L., Xu Z.Z., Winker K., Kado D.M., Orwoll E., Manary M., Mirarab S., Knight R. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems, 2018, 3: e00021-18 CrossRef
  36. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodríguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L., Kaehler B.D., Kang K.B., Keefe C.R., Keim P., Kelley S.T., Knights D., Koeste.r I, Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S., Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., van der Hooft J.J.J., Vargas F., Vázquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K.C., Williamson C.H.D., Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37: 852-857 CrossRef
  37. McMurdie P.J., Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 2013, 8(4): e61217 CrossRef
  38. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550 CrossRef
  39. Loiko S.V., Geras'ko L.I., Kulizhskii S.P., Amelin I.I., Istigechev G.I. Pochvovedenie, 2015, 4: 410-423 CrossRef (in Russ.).
  40. Orlov D.S., Sadovnikova L.K., Sukhanova N.I. Khimiya pochv [Soil chemistry]. Moscow, 2005 (in Russ.).
  41. Bazilevich N.I., Titlyanova A.A. Biologicheskii krugovorot na pyati kontinentakh: azot i zol'nye elementy v prirodnykh nadzemnykh ekosistemakh [Biological circulation on five continents: nitrogen and ash elements in natural above-ground ecosystems]. Novosibirsk, 2008 (in Russ.).
  42. Trofimov S.S. Ekologiya pochv i pochvennye resursy Kemerovskoi oblasti [Ecology of soils and soil resources of the Kemerovo region]. Novosibirsk, 1975 (in Russ.).
  43. Achat D.L., Bakker M.R., Augusto L., Derrien D., Gallegos N., Lashchinskiy N., Milin S., Nikitich P., Raudina T., Rusalimova O., Zeller B., Barsukov P. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties. Biogeosciences, 2013, 10: 733-752 CrossRef
  44. Loiko S.V., Bobrovskii M.V., Amelin I.I. Materialy dokladov Vserossiiskoi nauchno-prakticheskoi konferentsii «Chelovek i priroda — vzaimodeistvie na osobo okhranyaemykh prirodnykh territoriyakh>», posvyashchennoi Godu osobo okhranyaemykh prirodnykh territorii i Godu ekologii (Novokuznetsk, 27-30 sentyabrya 2017 goda) [Proc. All-Russ. Conf. «Man and nature — interaction in protected natural areas»]. Novokuznetsk, 2017: 81-96 (in Russ.).
  45. Smolentsev B.A., Smolentseva E.N. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2020, 50: 6-27 CrossRef (in Russ.).
  46. Korsunov V.M. V sbornike: O pochvakh Sibiri [In: About the soils of Siberia]. Novosibirsk, 1978: 122-131 (in Russ.).
  47. Korsunova T.M., Korsunov V.M. V sbornike: Genezis i geografiya lesnykh pochv [In: Genesis and geography of forest soils]. Moscow, 1980: 85-104 (in Russ.).
  48. Korsunov V.M., Vedrova E.F., Ignat'eva L.N. V sbornike: Pochvy zony KATEKa [In: Soils of the KATEK zone]. Krasnoyarsk, 1981: 99-113 (in Russ.).
  49. Korsunov V.M., Vedrova E.F. V sbornike: Geografiya i kartografiya lesnykh pochv [In: Geography and cartography of forest soils]. Novosibirsk, 1982: 66-88 (in Russ.).
  50. Gorozhankina S.M., Konstantinov V.D. Geografiya taigi Zapadnoi Sibiri [Geography of the taiga of Western Siberia]. Novosibirsk, 1978 (in Russ.).
  51. Vasenev I.I., Targul'yan V.O. Vetroval i taezhnoe pochvoobrazovanie (rezhimy, protsessy, morfogenez pochvennykh suktsessii) [Windfall and taiga soil formation (modes, processes, morphogenesis of soil successions)]. Moscow, 1995 (in Russ.).
  52. Vasenev I.I. Pochvennye suktsessii [Soil successions]. Moscow, 2008 (in Russ.).
  53. Urusevskaya I.S., Khokhlova O.S., Sokolova T.A. Pochvovedenie, 1992, 8: 22-37 (in Russ.).
  54. Ponomareva V.V. Teoriya podzoloobrazovatel'nogo protsessa. Biokhimicheskie aspekty /Pod redaktsiei M.M. Kononova [The theory of the podzol formation process. Biochemical aspects. M.M. Kononov (ed.)]. Kazan', 1964 (in Russ.).
  55. Ponomareva V.V., Plotnikova T.A. Gumus i pochvoobrazovanie (metody i rezul'taty izucheniya) [Humus and soil formation (methods and results of the study)]. Leningrad, 1980: 222 (in Russ.).
  56. Pershina E.V., Ivanova E.A., Korvigo I.O., Chirak E.L., Sergaliev N.H., Abakumov E.V., Provorov N.A., Andronov E.E. Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment, 2018, 631-632: 1421-1430 CrossRef
  57. Rozenberg G.S. Byulleten' Samarskaya Luka, 2007, 16(3-21): 581-584.
  58. Sangwan P., Chen X., Hugenholtz P., Janssen P.H. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 2004, 70(10): 5875-5881 CrossRef
  59. Kant R., van Passel M.W., Palva A., Lucas S., Lapidus A., Glavina del Rio T., Dalin E., Tice H., Bruce D., Goodwin L., Pitluck S., Larimer F.W., Land M.L., Hauser L., Sangwan P., de Vos W.M., Janssen P.H., Smidt H. Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium. Journal of Bacteriology, 2011, 193(11): 2902-2903 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)