PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.5.978eng

UDC: 635.21:631.524.8(571.1)

Acknowledgements:
This work was carried out as part of the Complex Program of Research “Development of potato breeding and seed production”.

 

DONORS OF POTATO (Solanum L.) PLASTICITY AND YIELD STABILITY TRAITS IN THE ENVIRONMENTAL CONDITIONS OF NORTH FOREST STEPPE OF WESTERN SIBERIA

V.N. Pakul, N.A. Lapshinov, A.N. Gantimurova, V.I. Kulikova

Kemerovo Research Institute of Agriculture, the Branch of Siberian Federal Scientific Center of Agrobiotechnology RAS, 47, ul. Tsentral’naya, p. Novostroika, Kemerovo District, Kemerovo Province, 650510 Russia, e-mail vpakyl@mail.ru (✉ corresponding author), nik.lapshinov.55@mail.ru, kemniish@mail.ru, kulikova.potato@yandex.ru

ORCID:
Pakul V.N. orcid.org/0000-0003-0681-6273
Gantimurova A.N. orcid.org/0000-0002-2945-6381
Lapshinov N.A. orcid.org/0000-00019869-2372
Kulikova V.I. orcid.org/0000-0002-6204-7555

Received September 28, 2019

 

Potato (Solanum tuberosum L.) varieties possessing sustainable high yield under varying environmental conditions and other valuable properties, e.g. resistance to diseases and pests, are much appreciated by practitioners. Seeking for donor plants with high environmental plasticity and stability in specific cultivation zone is a key point, especially in creating highly productive adaptive varieties for regions with severe agro-climatic conditions. This paper reports the first assessment of new potato hybrids created in the soil and climatic conditions of Western Siberia, as donors of high yielding and complex relative resistance to fungal diseases, potato Y-virus, and golden potato nematode. The best of them are already involved in practical selection for productivity and high adaptability. Our goal was to assess the parameters of adaptability in created potato hybrids under the conditions of the northern forest-steppe of Western Siberia (Kuznetsk Basin, Kemerovo Region, Kemerovo District, 2014-2018; 70 m2 plots with 20 m2 test area arranged randomly in four repetitions). Planting was carried out in the third decade of May at 35.0 thousand bushes per 1 ha (70×35 cm; a Cramer potato planter, CRAMER Technik, Germany). The samples (n = 170) including collection potato hybrids created in Kemerovo Research Institute of Agriculture were examined in a collection nursery.  The varieties Lyubava (early season), Nevskii (medium-early ripening) and Tuleevskii (medium-ripening) were the standard. According to our research data, the Lyubava, Nevskii, Tuleevskii varieties and hybrids 6-4-11 and 22103-10 are extensive type potato genotypes with low environmental plasticity (bi = 0.28-0.91 < 1). Hybrid 3-21s-11 (bi = 1.53) with medium yield stability (Si2 = 14.6) showes the greatest response to external conditions. Hybrids 22103-10 and 3-21c-11 are donors of resistance to potato virus Y (gene Ryсhc), golden potato nematode Globodera rostochiensis (Woll.) (gene H1) and pale nematode G. pallida (Stone) Behrens. (gene Gpa2). According to a complex of the traits, three hybrids of the intensive type (17-5/6-11, 1-5-12 and 1615-10) possess high adaptiveness, i.e. an increased environmental plasticity (bi = 1.38, 1.20, and 1.17) and high stability (Si2 = 1.1, 9.4, 5.2), and are of particular value for breeding. Moreover, the hybrid 17-5/6-11 is a donor of resistance genes to potato virus Y (PVY) (Ryсhc) and golden potato nematode (H1, with three markers — TG689, 57R, and N195). Hybrid 1-5-12 contains a combination of the H1 genes (for all three markers) and Gro1-4 gene of resistance to G. rostochiensis, Gpa2 gene of resistance to G. pallida, and genes Ryсhc and Rysto conferring resistance to PVY. Long-term field surveys of resistance to fungal pathogens, Phytophthora infestans (Mont.) De Bary, Alternaria solani (Ell.Et Matr) Sor., Fusarium oxysporum Schlet., Rhizoctonia solani J.G. Kühn) and Actinomyces scabies Gussow showed a 7-9 point relative stability in all tested hybrids.

Keywords: Solanum tuberosum L., potato, yields, adaptability, genotype×environment interaction, plasticity, stability.

 

REFERENCES

  1. Jacobs M.M.J., Smulders M.J.M., van den Berg R.G., Vosman B. What’s in a name: genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evolutionary Biology, 2011, 11: 42 CrossRef
  2. Jansky S.H., Dempewolf H., Camadro E.L., Simon R., Zimnoch-Guzowska E., Risognin D.A., Bonierbale M.A. Case for crop wild relative preservation and use in potato. Crop Science, 2013, 53: 746-754 CrossRef
  3. Devaux A., Kromann P., Ortiz O. Potatoes for sustainable global food security. Potato Res., 2014, 57(3-4): 185-199 CrossRef
  4. Ortiz O., Mares V. The historical, social, and economic importance of the potato crop. In: The potato genome. Compendium of Plant Genomes. S. Kumar Chakrabarti, C. Xie, J. Kumar Tivari (eds.). Springer, Cham, 2017: 1-10 CrossRef
  5. Abhayapala K.M.R.D., De Costa W.A., Fonseka R.M., Prasannath K., De Costa D.M., Suriyagoda L.D.B., Abeythilakeratne P.D., Nugaliyadde M.M. Response of potato (Solanum tuberosum) to increasing growing season temperature under different soil management and crop protection regimes in the upcountry of Sri Lanka. Tropical Agricultural Research, 2014, 25(4): 555-569 CrossRef
  6. Haverkort A.J., Franke A.C., Steyn J.M., Pronk A.A., Caldiz D.O., Kooman P.L. A Robust Potato Model: LINTUL-POTATO-DSS. Potato Res., 2015, 58: 313-327 CrossRef
  7. Rykaczewska K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am. J. Potato Res., 2013, 4: 2386-2393 CrossRef
  8. Deguchi T., Naya T., Wangchuk P., Itoh E., Matsumoto M., Zheng X., Gopal J., Iwama K. Aboveground characteristics, yield potential and drought tolerance in “Konyu” potato cultivars with large root mass. Potato Res., 2010, 53: 331-340 CrossRef
  9. Legay S., Lefèvre I., Lamoureux D., Barreda C., Luz R.T., Gutierrez R., Quiroz R., Hoffmann L., Hausman J.F., Bonierbale M., Evers D., Schafleitner R. Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.). Funct. Integr. Genomics, 2011, 11(2): 275-291 CrossRef
  10. Haas B., Kamoun S., Zody M., Jiang R., Handsaker R., Cano L. et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461(7262): 393-398 CrossRef
  11. Asano K., Kobayashi A., Tsuda S., Nishinaka M., Tamiya S. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan. Breed. Sci., 2012, 62: 142-150 CrossRef
  12. Rogozina E.V., Teren't'eva E.V., Potokina E.K., Yurkina E.N., Nikulin A.V., Alekseev Ya.I. Multiplex PCR-based identification of potato genotypes as donors in breeding for resistance to diseases and pests. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2019, 54(1): 19-30 CrossRef
  13. Hirsch C.N., Hirsch C.D., Feicher K., Coombs J., Zarka D., Van Deynze A., De Jong W., Veiltleux R.E., Jansky S., Dethke P., Douches D.S., Buel C.R. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3: Genes, Genomes, Genetics, 2013, 3: 1003-10013 CrossRef
  14. Spooner D.M., Ghislain M., Simon R. Jansky S.H., Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev., 2014, 80(4): 283-383 CrossRef
  15. Loginov Yu.P., Kazak A.A. Vestnik Kemerovskogo gosudarstvennogo universiteta, 2015, 4 (1/61): 24-28 (in Russ.). 
  16. Hardigan M.A., Laimbeer F.P.E., Newton L., Crisovan E., Hamilton J.P., Vaillancourt B., Wiegert-Rininger K., Wood J.C., Douches D.S., Farré E.M., Veilleux R.E., Buell C.R. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS USA,2017, 114(46): E9999-E10008 CrossRef
  17. Zhang H., Mittal N., Leamy L.J., Barazani O., Song B.N. Back into the wild — apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl., 2017, 10(1): 5-24 CrossRef
  18. Gavrilenko T.A., Ermishin A.P. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 16-29 CrossRef (in Russ.). 
  19. Simakov E.A., Sklyarova N.P., Yashina I.M. Metodicheskie ukazaniya po tekhnologii selektsionnogo protsessa kartofelya [Guidelines for technology of potato breeding]. Moscow, 2006 (in Russ.). 
  20. Zadina N., Vidner I., Maior M., Baresh I., Odegnal V., Baranek N., Bukasov S., Budin K., Kameraz A., Lekhnovich V., Kostina L., Bavyko N., Korneichuk V. Mezhdunarodnyi klassifikator SEV vidov kartofelya sektsii Tuberarium (Dun.) Buk. roda Solanum L. [CMEA International classifier of potato species of the section Tuberarium (Dun.) Buk. genus Solanum L.].Leningrad, 1984 (in Russ.). 
  21. Budin K.Z., Kameraz A.YA., Bavyko N.F., Kostina L.I., Morozova E.V., Turuleva L.M. Izuchenie i podderzhanie obraztsov mirovoi kollektsii kartofelya. Metodicheskie ukazaniya. Leningrad, 1986 (in Russ.). 
  22. Eberchart S.A., Russel W.A. Stability parameters for comparing varieties. Crop Sci.,1966, (6)1: 36-40 CrossRef
  23. Kasai K., Morikawa Y., Sorri V.A., Valkonen J.P.T., Gebhardt C., Watanabe K.N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000, 43: 1-8 CrossRef
  24. Mori K., Sakamoto Y., Mukojima N., Tamiya S., Nakao T., Ishii T., Hosaka K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011, 180: 347-355 CrossRef
  25. Song Y.S., Hepting L., Schweizer G., Hartl L., Wenzel G., Schwarzfischer A. Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor. Appl. Genet., 2005, 111: 879-887 CrossRef
  26. Biryukova V.A., Zhuravlev A.A., Abrosimova S.B., Kostina L.I., Khromova L.M., Shmyglya I.V., Morozova N.N., Kirsanova S.N. Doklady RASKHN, 2008, 6: 3-6 (in Russ.). 
  27. Schultz L., Cogan N.O.I., McLean K., Dale M.F.B., Bryan G.J., Forster J.W., Slater A.T. Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato (Solanum tuberosum L.). Plant Breeding, 2012, 131: 315-321 CrossRef
  28. Ghislain M., Nunez J., del Rosario Herrera M., Rignataro J., Guzman F., Bonierbale M., Spooner D.M. Robust and highly informative microsatellite-based genetic identity kit for potato. Mol. Breeding, 2009, 23: 377-388 CrossRef
  29. Sainakova A.B., Romanova M.S., Krasnikov S.N., Litvinchuk O.V., Alekseev Ya.I., Nikulin A.V., Terent'eva E.V. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(1): 18-24 CrossRef (in Russ.). 
  30. Sorokin O.D. Prikladnaya statistika na komp'yutere [Applied statistics on a computer]. Krasnoobsk, 2004 (in Russ.). 
  31. Dospekhov B.A. Metodika polevogo opyta: monografiya [Methods of field trials: A monograph].Moscow, 1985 (in Russ.). 
  32. Castaneda-Alvarez N.P., de Haan S., Juarez H., Khoury C.K., Achicanoy H.A., Sosa C.C., Bernau V.V., Salas A., Heider B., Simon R., Maxted N., Spooner D. Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS ONE, 2015, 10(4): e0122599 CrossRef
  33. Bamberg J.B., del Rio A. Accumulation of genetic diversity in the US Potato Genebank. Am. J. Potato Res., 2016, 93(5): 430-435 CrossRef
  34. Kim S.R., Ahn Y.K., Kim T.G., Kang H.S., Song S.W., Kim B.C., Kang S.G. Breeding of a new cultivar «Jeseo» with resistance to common scab. Korean J. Breed. Sci., 2013, 45: 468-473 CrossRef
  35. Quenouille J., Vassilakos N., Moury B. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pat hogenicity. Molecular Plant Pathology, 2013, 14(5): 439-452 CrossRef
  36. Kogovsek P., Kladnik A., Mlakar J., Znidarie M.T., Dermastia M., Ravnikar M., Pompe-Novak M. Distribution of Potato virus Y in potato plant organs, tissues, and cells. Phytopathology, 2011, 101: 1292-1300 CrossRef
  37. Karasev A.V., Grau S.M. Continuous and emerging challenges of Potato virus Y in potato. Annual Review of Phytopathology, 2013, 51: 571-586 CrossRef
  38. Massumi H., Poornohammadi S., Pishyar S., Maddahian M., Heydarnejad J., Hosseni-Pouer A., Bysterveldt K., Varsani A. Molecular characterization and field survey of Iranian potato virus X isolates. VirusDisease, 2014, 25(3): 338-344 CrossRef
  39. Senanayake D.M.J.B., Mandal B. Expression of symptoms, viral coat protein and silencing suppressor gene during mixed infection of a N-Wi strain of potato virus Y and an asymptomatic strain of potato virus X. VirusDisease, 2014, 25(3): 314-321 CrossRef
  40. Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics, 2013, 29(4): 248-256 CrossRef
  41. Slater A.T., Cogan N.O., Forster J.W. Cost analysis of the application of marker­assisted selection in potato breeding. Mol. Breeding, 2013, 32(2): 299-310 CrossRef
  42. Zoteeva N.M., Antonova O.Yu., Klimenko N.S., Apalikova O.V., Carlson-Nilsson U., Karabitsina Yu.I., Ukhatova Yu.V., Gavrilenko T.A. Facilitation of introgressive hybridization of wild polyploid Mexican potato species using DNA markers of R genes and of different cytoplasmic types. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2017, 52(5): 964-975 CrossRef
  43. Khyutti A.V., Antonova O.Yu., Mironenko N.V., Gavrilenko T.A., Afanasenko O.S. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 51-61 CrossRef (in Russ.). 
  44. Albiski F., Najla S., Sanoubar R., Alkabani N., Murshed R. In vitro screening of potato lines for drought tolerance. Physiology and Molecular Biology of Plants, 2012, 18(4): 315-321 CrossRef
  45. Alva A., Moore A., Collins H. Impact of deficit irrigation on tuber yield and quality of potato cultivars. Journal of Crop Improvement, 2012, 26: 211-227 CrossRef
  46. Anithakumari A.M., Nataraja K.N., Visser R.G.F., Van Der Linden C.G. Genetic dissection of drought tolerance and recovery potential by quantitativetrait locus mapping of a diploid potato population. Mol. Breeding, 2012, 30(2): 1413-1429 CrossRef
  47. Fanourakis D., Carvalho S.M.P., Almeida D.P.F., Heuvelink E. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. Physiologia Plantarum, 2011, 142: 274-286 CrossRef
  48. Wang-Pruski G., Schofield A. Potato: improving crop productivity and abiotic stress tolerance. In: Improving crop resistance to abiotic stress. N. Tuteja, S.S. Gill, A.F. Tiburcio, R. Tuteja (eds.). Wiley-VCH Verlag GmbH & Co. KGaA, 2012: 1121-1153 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)