PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.5.1052eng

UDC: 633.34:631.461.52:579.64

Acknowledgements:
Supported financially by the Ministry of Education and Science of the Russian Federation (Agreement № 14.607.21.0178, RFMEFI60717X0178)

 

PRE-SOWING PROTECTION OF INOCULATED SOYBEAN Glycine max (L.) Merr. SEEDS BY WATER-SOLUBLE POLYMER COMPOSITIONS AND THEIR SOLID-PHASE MODIFICATION

Yu.V. Laktionov1, Yu.V. Kosulnikov1, D.V. Dudnikova1, V.V. Yahno2,
A.P. Kojemyakov1

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail laktionov@list.ru, kullavayn@gmail.com (✉ corresponding author), vyachno@yandex.ru, kojemyakov@rambler.ru;
2Ekos Branch, All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail vyachno@yandex.ru

ORCID:
Laktionov Yu.V. orcid.org/0000-0001-6241-0273
Yahno V.V. orcid.org/0000-0001-7953-3405
Kosulnikov Yu.V. orcid.org/0000-0003-1134-3503
Kojemyakov A.P. orcid.org/0000-0002-9657-2454
Dudnikova D.V. orcid.org/0000-0002-4319-1957

Received July 12, 2019

 

The effectiveness of some water-soluble polymers as film-forming agents that provide better adhesion of bacteria to seeds (like multicomponent formulations in modern chemical dressings) remains practically relevant. The likely candidate adhesives are low and high molecular weight sodium alginate (FMC polymer), hydroxypropyl methylcellulose (HPMC) (Colorcon®, Colorcon, Inc., USA), polyethylene glycol (PEG), carbomer-carbopol 940 (Necardis SA), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (povidone, PVP) (K15). Film-forming polymers can also improve the shelflife of biologicals, their compatibility with chemical protective agents and resistance to UV radiation, temperature extremes and drying, thus increasing survival of bacteria on the surface of inoculated seeds. These allow practitioners to carry out seed pre-sowing inoculation beforehand. Developed polymer compositions should be more effective than single-component, provided that they remain cost-effective and convenient for practical use. This paper is the first to report the effects of various polymer combinations on inoculated seeds and the improvement of protective properties of the water-soluble polymers by activated charcoal, a solid-phase component. Among the polymers tested, polyvinylpyrrolidone is revealed to be the most effective for rhizobial survival due to longer allowable interval between seed inoculation and sowing. Our objective was to compare survival rate of Bradyrhizobium japonicum 634b inoculum for soybean cv. Belgorodskaya 7 seeds as influenced by water-soluble polymers polyvinylpyrrolidone, polyvinyl alcohol, sodium alginate and carboxymethylcellulose as additives. Our findings indicate that 10 % polyvinylpyrrolidone solution is the most effective among the studied polymers. Its use increases more than 10-fold the survival of nodule bacteria on seeds 10 days after inoculation of seed material. Variants with different concentrations of carboxymethyl cellulose and sodium alginate do not ensure bacterial survival on seeds for more than 3 days. It is possible to create an effective polymer-carbon composition with a lower concentration of polyvinylpyrrolidone (7.5 % polyvinylpyrrolidone and 5.0 % activated charcoal). This composition is more effective than polyvinylpyrrolidone without coal, and provides a 20-30 % reduction in bacterial death on inoculated seeds after the first 5-7 days of seed storage.

Keywords: symbiotic nitrogen, Bradyrhizobium japonicum, inoculation, soybean, polyvinylpyrrolidone, polyvinyl alcohol, sodium alginate, carboxymethylcellulose.

 

REFERENCES

  1. Regar M.K., Meena R.H., Jat G., Mundra S.L. Effect of different rhizobial strains on growth and yield of soybean [Glycine max (L.) Merrill]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(11): 3653-3659 CrossRef
  2. Vavilov P.P., Posypanov G.S. Bobovye kul'tury i problema rastitel'nogo belka [Legumes and the problem of vegetable protein]. Moscow, 1983 (in Russ.). 
  3. De Micco V., Buonomo R., Paradiso R., De Pascale S., Aronne G. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs): theoretical selection. Advances in Space Research, 2012, 49: 1415-1421 CrossRef
  4. Lamptey S., Ahiabor B.D.K., Yeboah S., Asamoah C. Response of soybean (Glycine max) to rhizobial inoculation and phosphorus application. Journal of Experimental Biology and Agricultural Sciences, 2014, 2(1): 72-77.
  5. Agafonov E.V., Guzhvin S.A. Kormoproizvodstvo, 2004, 11: 14-16 (in Russ.). 
  6. Zavalin A.A., Blagoveshchenskaya G.G., Kozhemyakov A.P. V sbornike: Innovatsionno-tekhnologicheskie osnovy razvitiya zemledeliya [In: Innovative technological basis for the development of agriculture]. Kursk, 2006: 312-315 (in Russ.). 
  7. Kokorina A.L., Kozhemyakov A.P. Bobovo-rizobial'nyi simbioz i primenenie mikrobiologicheskikh preparatov kompleksnogo deistviya — vazhnyi rezerv povysheniya produktivnosti pashni [Legume-rhizobial symbiosis and complex microbiological preparations are an important reserve to increase arable land productivity].  St. Petersburg, 2010 (in Russ.). 
  8. Argaw A. Response of soybean to inoculation with Bradyrhizobium spp. in saline soils of Shinille Plains, Eastern Ethiopia. East African Journal of Sciences, 2014, 8(2): 79-90.
  9. Sinegovskaya V.T., Gaiduchenko A.N. Zemledelie, 2010, 5: 27-29 (in Russ.). 
  10. Vollmann J. Soybean versus other food grain legumes: a critical appraisal of the United Nations International Year of Pulses 2016. Die Bodenkultur: Journal of Land Management, Food and Environment, 2016, 67(1): 17-24 CrossRef
  11. Provorov N.A. Izvestiya AN SSSR, ser. Biol., 1991, 1: 77-87 (in Russ.). 
  12. Dart P.J., Wani S.P., Giller K.E., Kipe-Nolt J., Day J.M., Avalakki J.M., Upadhyya M.N., Hebbar P., Chandrapalaiah S.C. Nitrogen fixation associated with sorghum and pearl millet. In: Australia Institute of Agricultural Science AIAS Occasional Publication No. 12: Proc. of the Seventh Australian Legume Nodulation Conference. Sydney, 1984: 111-113 CrossRef
  13. Unkovich M.J., Pate J.S. An appraisal of recent measurements of symbiotic N2 fixation by annual legumes. Field Crops Research, 2000, 65(2-3): 211-228 CrossRef
  14. Hardy R.W.F., Bums R.C., Holstein R.D. Application of the acetylene reduction assay for measurement of nitration. Soil Biology and Biochemistry, 1973, 5: 47-81.
  15. Patra R.K., Pant L.M., Pradhan K. Response of soybean to inoculation with rhizobial strains: effect on growth, yield, N uptake and soil N status. World Journal of Agricultural Sciences, 2012, 8(1): 51-54.
  16. Clúa J., Roda C., Zanetti M.E., Blanco F.A. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes (Basel), 2018, 9(3): 125 CrossRef
  17. Al-Falih A.M.K. Factors affecting the efficiency of symbiotic nitrogen fixation by Rhizobium. Pakistan Journal of Biological Sciences, 2002, 5(11): 1277-1293 CrossRef
  18. Vashan Y., Bashan L., Prabhu S.R., Hernandez J. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant and Soil, 2014, 378: 1-33 CrossRef
  19. Grishechkin V.V., Golovina E.V. Zernobobovye i krupyanye kul'tury, 2014, 1(9): 41-44 (in Russ.). 
  20. Stupina L.A., Mosina A.S. Vestnik KrasGAU, 2016, 3: 84-89 (in Russ.). 
  21. Głodowska M., Schwinghamer T., Husk B., Smith D. Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 2017, 8(9): 1048-1064 CrossRef
  22. Tittabutr P., Payakapong W., Teaumroong N., Singleton P., Bookerd N. Growth, survival and field performance of Bradyrhizobial liquid inoculant formulations with polymeric additives. ScienceAsia, 2007, 33: 69-72 CrossRef
  23. Rivera D., Obando M., Barbosa H., Rojas-Tapias D., Bonilla Buitrago R. Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Universitas Scientiarum, 2014, 19(3): 265-275 CrossRef
  24. Kosul'nikov Yu.V., Laktionov Yu.V. Factors which influence toxicity of legume seed disinfectants towards biologicals based on symbiotic nitrogen fixers. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(5): 1037-1044 CrossRef
  25. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 2012 (in Russ.). 
  26. Paulo I., Fernandes J., Tiago G., Oliveira P., Ribeiro G.X., Rumjanek N.G. Polymers as carriers for rhizobial inoculant formulations. Pesquisa Agropecuária Brasileira, 2009, 44(9): 1184-1190 CrossRef
  27. Damasceno R., Roggia I., Pereira C., Sá E. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. The Canadian Journal of Microbiology, 2013, 59(11): 716-719 CrossRef
  28. Bashan Y., Gonzalez L.E. Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology, 1999, 51(2): 262-266 CrossRef
  29. Mounika N., Muralidhara Rao D., Uma A., Ali S. Effect of different chemical additives on growth of Azotobacter vinelandii. International Journal of Scientific Research and Management, 2018, 6(03): B-2018-24-26 CrossRef
  30. Sehrawat A., Suneja S., Yadav A., Anand R.C. Influence of different additives on shelf life of Rhizobial inoculants for mungbean (Vigna radiata L.). International Journal of Recent Scientific Research, 2015, 6(5): 4338-4342.

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)