doi: 10.15389/agrobiology.2018.5.1080eng

UDC 634.22:632.78:632.92:632.936

 

THE BIO-ECOLOGY OF NORTHERN POPULATIONS OF THE PLUM
MOTH Grapholitha funebrana Tr. (Lepidoptera: Tortri-cidae)
IN THE CONTEXT OF CLIMATE CHANGE IN THE
CENTRAL NECHERNOZEM ZONE OF RUSSIA

A.S. Zeynalov

All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Federal Agency for Scientific Organizations, 4, ul. Zagor’evskaya, Moscow, 115598 Russia, e-mail adzejnalov@yandex.ru (✉ corresponding author)

ORCID:
Zeynalov A.S. orcid.org/0000-0001-5519-2837
The authors declare no conflict of interests

Received April 6, 2018

 

Climate change over the last decades and rising global temperatures, especially in the Northern latitudes, affect ecosystems, including agricultural sector. The crops naturally grown in southern and central Russia are now expanding to northern areas along with dangerous pests that are not characteristic of these areas. Plum moth Grapholitha funebrana Tr. causes over 80 % yield losses. At least 3-4 treatments are required during the growing season to ensure the profitability. Chemical and environmentally friendly methods (pheromone traps) are of practical use. Anyway, successful protection requires detailed biological and ecological characterization of the pest in a specific area. In the Central Non Chernozem Zone of Russia such studies have not yet been conducted. This paper is the first evidence of G. funebrana wide spread in the Central Non Chernozem Zone where the pest can produce two generations. The study was carried out in the fruit-bearing plum plantations (All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow Region, Leninskii district) in 2015-2017. Summer dynamics of G. funebrana population was monitored using pheromone traps with Denazil-P («Schelkovo Agrokhim», Russia) to attract moth males. Two days after the first plum moth butterflies flied, 400 leaves and the same number of ovaries (after their formation) were collected from 10 trees standing evenly along diagonals of the plantation to determine the start date of egg laying. From each tree the leaves and ovaries were collected daily from four sides (10 samples per side). The beginning of caterpillar hatching was determined by daily viewing 400 ovaries, starting from day 4 after the detection of the first eggs laid. Our survey shows that northern populations of G. funebrana are presently widely spread and successfully adapted outside 52° north latitude previously deemed the northern border of plum moth area. In Central Non-Chernozem Zone, particularly in the Moscow region (55° north latitude), the pest is capable to produce not one but two generations if sum of effective temperatures (SET) above 10 °C is 854-1124 °C. This is much lower than the value for the forest-steppe zone in Ukraine (1231-1353 °C). In some years the second G. funebrana generation exceeds the first generation in abundance. The start date of the overwintered generation flight varies greatly depending on the weather conditions during spring. The favorable sum of effective temperatures is from 59.4 to 159.8 °C which coincides with flowering and ovary formation in plum trees. So SET values and phenophases of plant development are not reliable reference points to forecast the beginning of the butterfly flight. Unlike geographical populations of G. funebrana from the southern and central zones of horticulture, butterflies of northern G. funebrana population remain active at daily air average temperature of 11-14 °C. This study indicates that in the northern gardening protective measures should be planned against both the first and second generation of plum fruit moth to prevent mass damage to fruits and to reduce the number of overwintering G. funebrana population

Keywords: Grapholitha funebrana Tr., northern populations, pheromone traps, the sum of effective temperatures, the dynamics of the flight.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Menzel A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol., 2000, 44(2): 76-81 CrossRef
  2. Kozharinov A.V., Minin A.A. V sbornike: Vliyanie izmeneniya klimata na ekosistemy [In: Impact of climate change on ecosystems]. Moscow, 2001: 17-23 (in Russ.).
  3. Delbart N., Picard G., Toan T.L., Kergoats L., Quengan S., Woodwand I., Dye D., Fedotova V. Spring phenology in Boreal Eurasia over a nearly century time scale. Glob. Change Biol., 2008, 14(3): 603-614 CrossRef
  4. Thuiller W., Lavergne S., Roquet C., Boulangeat I., Lafourcade B., Araujo M.B. Consequences of climate change on the tree of life in Europe. Nature, 2011, 470(7335): 531-534 CrossRef
  5. Phenology and climate change. X. Zhang (ed.). Croatia, 2012 CrossRef
  6. Insarov G.E., Borisova O.K., Korzukhin M.D., Kudeyarov V.N., Minin A.A., Ol'chev A.V., Semenov S.M., Sirin A.A., Kharuk V.I. V sbornike: Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh system [In: Methods for assessing the effects of climate change on physical and biological systems]. Moscow, 2012: 190-265 (in Russ.).
  7. Phenology: an integrative environmental science. M.D. Schwartz (ed.). Springer, Netherlands, 2013 CrossRef
  8. IPCC Summary for policymakers. In: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report to the Intergovernmental Panel on climate change. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, L.L. White (eds.). Cambridge University Press, Cambridge, NY, 2014: 1-32.
  9. Cahill A.F., Aiello-Lammens M.E., Caitlin F.M., Hua X., Karanewsky C.J., Ryu H.Y., Sbeglia G.C., Spagnolo F., Waldron J.B., Wiens J.J. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr., 2014, 41(3): 429-442 CrossRef
  10. Musolin D.L., Saulich A.Kh. Materialy XV s"ezda Russkogo entomologicheskogoobshchestva [Proc. XV Congress of the Russian Entomological Society]. Novosibirsk, 2017: 340-341 (in Russ.).
  11. Zeinalov A.S. Uspekhi sovremennoi nauki, 2017, 9(2): 94-100 (in Russ.).
  12. Zeinalov A.S., Griboedova O.G. Sadovodstvo i vinogradarstvo, 2016, 3: 35-40 (in Russ.).
  13. Koltun N., Yarchakovskaya S. Mass trapping of Synanthedon tipulifornis on blackcurrants and Grapholithafunebrana on plums with pheromone glue traps in Belarus. Journal of Fruit and Ornamental Plant Research, 2006, 14(Suppl. 3): 175-180.
  14. Shevchuk I.V., Satina G.M., Denisyuk A.F. Vestnik zashchity rastenii, 2014, 1: 53-58 (in Russ.).
  15. Ignatova E., Karpun N., Pyatnova Yu., Vendilo N. Mezhdunarodnyi sel'skokhozyaistvennyi zhurnal, 2015, 3: 60-63 (in Russ.).
  16. Andreev R., Kutinkova H. Possibility of reducing chemical treatments aimed at control of plum insect pest. Proc. IX International Symposium on plum and prune genetics, breeding and pomology (Palermo, Italy, March 16-19, 2008). Acta Hortic., 2010, 874: 215-220 CrossRef
  17. Sciarretta A., Trematerra P., Baumgärtner J. Geostatistical analysis of Cydia funebrana (Lepidoptera: Tortricidae) pheromone trap catches at two spatial scales. American Entomologist, 2001, 47(3): 174-184 CrossRef
  18. Nastas T. Al'ternativnye metody podavleniya chislennosti Grapholitha funebrana Tr. ?tin?aagricol?, 2012, 1: 26-29.
  19. Toshova T., Subchev M. Circadian rhythm and female calling and mating behaviour in Procridinae (Lepidoptera: Zygaenidae). Acta Entomology Bulg., 2005, 11: 57-64.
  20. Subchev M., Toshova T., Koshio C., Franke S., Tr?ger A., Twele R., Franke W., Picket J.A., Wadhams L.J., Woodcock C.M. Identification and biological activity of sex pheromone components from females of the plum moth Illiberis rotundata Jordan (Lepidoptera: Zygaenidae: Procridinae). Chemoecology, 2009, 19(1): 47-54 CrossRef
  21. Deribizov V.E. Agro XXI, 2010, 1-3: 6-7 (in Russ.).
  22. Pyatnova Yu.B., Kislitsyna T.I., Voinova V.N., Karakotov S.D., Pletnev V.A., Vendilo N.V., Lebedeva K.V., Velcheva N., Staneva E. Zashchita i karantin rastenii, 2013, 8: 33-35 (in Russ.).
  23. Tuca O., Stan C., Mitrea I. Monitoring the Flight of Trichogramma dendrolimi Mats. in a plum orchard in order to establish the setup scheme for the plates with Anagasta kuhniella Zell. Eggs. 2nd EUFRIN Plum and Prune-Working-Grupp meeting on present constraints of plum growing in Europe (Craiova, Romania: Jul 20-22, 2010). Acta Hortic., 2012, 968: 161-166 CrossRef
  24. Samietz J., Hoehn H., Razavi E., Schaub L., Graf B. Decision support for sustainable orchard pest management with the Swiss forecasting system SOPRA. 2nd International symposium on horticulture in Europe (SHE) (Angers, France: Jul 01-05, 2012). Acta Hortic., 2015, 1099: 383-390 CrossRef
  25. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985 (in Russ.).
  26. Migulin, A.A., Osmolovskii G.E., Litvinov B.M., Pokozii I.T., Pospelov S.M. Sel'skokhozyaistvennayaentomologiya [Agricultural entomology]. Moscow, 1983 (in Russ.).
  27. Bondarenko N.V., Pospelov S.M., Persov M.P. Obshchaya i sel'skokhozyaistvennaya entomologiya [General and agricultural entomology]. Moscow, 1983 (in Russ.).
  28. Vasil'ev V.P., Livshchits I.Z. Vrediteli plodovykh kul'tur [Pests of fruit crops]. Moscow, 1984 (in Russ.).
  29. Butturini A., Tiso R., Molinari F. Phenological forecasting model for Cydiafunebrana. Bulletin OEPP, 2000, 30(1): 131-136 CrossRef
  30. Shevchuk I.V., Kutinkova Kh. Vestnik zashchity rastenii, 2011, 1: 51-55 (in Russ.).
  31. HrdyI., Kocourek F., Berankova J., Kuldova J. Temperature models for predicting the flight activity of local populations of Cydiafunebrana (Lepidoptera: Tortricidae) in Central Europe. Eur. J. Entomol., 1996, 93: 569-578.
  32. Zeinalov A.S. Plodovodstvo i yagodovodstvo Rossii, 2017, XXXXVIII(1): 107-110 (in Russ.).

back