doi: 10.15389/agrobiology.2018.5.1062eng

UDC 632.937.15

Acknowledgements:
Supported financially by the project of applied research and experimental development (PNER) batch 2017-14-579-0030 on the topic: «Creation of microbiological preparations for expanding the adaptive capacity of agricultural crops for nutrition, resistance to stress and pathogens» (code of the application 2017-14-579-0030-013), Agreement No. 14.607.21.0178, a unique identifier (project) RFMEFI60717X0178

 

SEARCH FOR NATURAL ISOLATES OF Bacillus thuringiensis
FOR DEVELOPMENT OF ECOLOGICALLY FRIENDLY BIOLOGICALS

S.D. Grishechkina, V.P. Ermolova, T.A. Romanova, A.A. Nizhnikov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency for Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail: svetagrishechkina@mail.ru (✉ corresponding author), Ermolovavalya1940@mail.ru, tat55176969@yandeõ.ru, ant.nizhnicov@gmail.com

ORCID:
Grishechkina S.D. orcid.org/0000-0002-4877-705X
Romanova T.A. orcid.org/0000-0003-1773-2956
Ermolova V.P. orcid.org/0000-0002-9473-8334
Nizhnikov A.A. orcid.org/0000-0002-8338-3494
The authors declare no conflict of interests

Received November 10, 2017

 

Intensification of agriculture determined the use of biopesticides for plant protection against harmful insects and phytopathogens. Currently, the biological preparations derived from the entomopathogenic bacterium Bacillus thuringiensis are of considerable interest since they have high specificity of action, safety for humans, warm-blooded animals, beneficial insects and the environment. High adaptive capacity of B. thuringiensis underlies its widespread distribution in nature. This paper represents the results of the screening for novel B. thuringiensis isolates from the natural substrates in the Leningrad region. There were 30 samples of substrates collected including soil, potato leaves, sick and dead insects. These samples were colony-purified on the fish agar medium. Based on morphology, 86 candidate colonies were selected from 3 500 colonies analyzed. Aniline Black staining coupled with optical microscopy demonstrated that 12 out of 86 isolates formed crystalline endotoxins of different shapes along with the spores. The isolated microorganisms were selected by their entomocidal activity and identified. As a result of this analysis, isolated bacteria were identified as B. thuringiensis and divided onto the two serovars: H1 (var. thuringiensis, isolates 5, 17, 28, 46, 82) and H10 (var. darmstadiensis, isolates 12, 15, 32, 35, 39, 48, 56). According to their biological characteristics (the formation of acetylmethylcarbinol, lecithinase, pigment, beta-exotoxin, film formation on meat-peptone broth, the utilization of sucrose, mannose, cellobiose, salicin, starch digestion as well as proteolytic activity), the analyzed isolates were similar to the reference strains. The titers of the isolates of the BtH1 and BtH10 serovars varied within limits of 1.3×109-2.5×109 and 1.5×109-2.4×109 CFU/ml, respectively. Isolates 17 BtH1 and 56 BtH10 were close to the reference strains by the titer and slightly decreased in the exotoxin content. After selection, the titer and the exotoxin content of the 17 BtH1 and 56 BtH10 isolates increased 1.32- and 1.50-fold, as well as 1.52- and 1.70-fold, respectively. In addition, the isolates referred to the BtHl0 serovars exhibited polyfunctional activity.

Êeywords: Bacillus thuringiensis, identification, phytophagous insects, phytopathogens, plant protection, polyfunctional biologicals.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Monastyrskii O.A. Zashchita i karantin rastenii, 2008, 12: 41-44 (in Russ.).
  2. Kandybin N.V., Patyka T.I., Ermolova V.P., Patyka V.F. Mikrobiokontrol' chislennosti nasekomykh i ego dominanta Bacillus thuringiensis [Insect number microbiocontrol and its dominant, the Bacillus thuringiensis bacteria]. St. Petersburg—Pushkin, 2009 (in Russ.).
  3. Lacey L.A., Grzywacz D., Shapiro-Ilan D.I., Frutos R., Brownbridge M., Goettel M.S. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol., 2015, 132: 1-41 CrossRef
  4. Mnif I., Ghribi D. Potential of bacterial derived biopesticides in pest management. Crop Prot., 2015, 77: 52-64 CrossRef
  5. Shternshis M.V., Belyaev A.A., TSvetkova V.P. Shpatova T.V., Lelyak A.A., Bakhvalov S.A. Biopreparaty na osnove bakterii roda Bacillus dlya upravleniya zdorov'em rastenii [Biological products based on bacteria of the genus Bacillus for plant health management]. Novosibirsk, 2016 (in Russ.).
  6. Belyaev F.F., Pospelova N.P., Lelyak F.F., Shternshis M., Shpatova T. The use of Bacillus spp. Strains for biocontrol of Ramularia leaf spot on strawberry and improving plant health in Western Siberia.  Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2016, 7(1): 1594-1606.
  7. Donmez V.F., Uysal B.D., Erkol E.F., Sezai C.R. Biological control of root rot disease caused by Rhizoctonia solani Kuhn on potato and bean using antagonist bacteria. Acta scientiarum Polonorum. Hortorum cultus = Ogrodnictwo, 2015, 14(5): 29-40.
  8. Haidar R., Deschamps A., Roudet J., Calvo-Garrido C., Bruez E., Rey P., Fermaud M. Multi-organ screening of efficient bacterial control agents against two major phathogen of grapevine. Biol. Control., 2016, 92: 55-65 CrossRef
  9. Choudhary D.K., Johri B.N. Interactions of Bacillusspp. and plants — with special reference to induced systemic resistance. Microbiol. Res., 2009, 164(5): 493-513 CrossRef
  10. Kumar P., Dubey R.C., Mahshwari D.K. Bacillus strain isolated from rhizosphere showed plant growth promoting and antagonistic activity against phythopathogens. Microbiol. Res., 2012, 167(8): 493-499 CrossRef
  11. Patel K.D., Bhanshali F.C., Chaudhary A.V., Ingle S.S. A new enrichment method for isolation of Bacillus thuringiensis from diverse sample types. Appl. Biochem. Biotechnol., 2013, 170(1): 58-66 CrossRef
  12. Raymond B., Federici B.A. In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity — a response to EFSA. FEMS Microbiol. Ecol., 2017b 93(7): fix084 CrossRef
  13. Al-Khamada A.D. Vestnik zashchity rastenii, 2009, 4: 54-62 (in Russ.).
  14. Ermolova V.P. Bacillus thuringiensis strains from natural sources in the Leningrad region: isolation and identification. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2016, 51(1): 128-131 CrossRef
  15. Grishechkina S.D. Mechanism and activity spectrum of microbiological preparation Batsikol with phytoprotective action. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(5): 685-693 CrossRef
  16. Aronson A., Shai Y. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol. Lett., 2001, 195(1): 1-8 CrossRef
  17. Saber W.I.A. Ghoneem K.V., Al-Askar A.A., Rashad Y.M., Ali A.A., Rashad E.M. Chitinase production by Vacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia disease of potato. Acta Biologica Hungarica, 2015, 66(4): 436-448 CrossRef
  18. Mnif I., Grau-Campistany A., Coronel-León J., Hammami I., Ali Triki M., Manresa A., Ghribi D. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res., 2016, 23(7): 6690-6699 CrossRef
  19. Kol'chevskii A.G., Rybina L.M., Kolomiets V.Ya. Vydelenie i otbor vysokovirulentnykh  kul'tur Bacillus thuringiensis var. galleriae /Pod redaktsiei V.A. Pavlyushina [Isolation and selection of highly virulent cultures of Bacillus thuringiensis var. galleriae. V.A. Pavlyushin (ed.)]. Leningrad, 1987 (in Russ.).
  20. De Barjac H., Bonnefoi A. A slassification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J. Invertebr. Pathol., 1968, 11: 335-347 CrossRef
  21. Lysenko O. Non-sporeforming bacteria pathogenic to insect: incidence and mechanisms. Ann. Rev. Microbiol., 1985, 39: 673-695 CrossRef
  22. Grishechkina S.D., Ermolova V.P., Minina G.N., Safronova V.I., Bologova E.V. Metodika. Kollektsiya shtammov bakterii — simbiontov vrednykh nasekomykh i gryzunov, prigodnykh dlya biokontrolya chislennosti vreditelei sel'skokhozyaistvennykh rastenii [The technique. Collection of bacteria strains — symbionts of harmful insects and rodents, suitable for biocontrol of the number of pests of agricultural plants]. St. Petersburg, 2014 (in Russ.).
  23. Metody eksperimental'noi mikologii /Pod redaktsiei V.I. Bilai [Methods of experimental mycology. V.I. Bilai (ed.)].  Kiev, 1982 (in Russ.).
  24. Abbot W.S. A method for computing the effectiveness of insecticide. Journal of Economic Entomology, 1925, 18(2): 265-267 CrossRef
  25. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985 (in Russ.).
  26. Smirnov O.V., Grishechkina S.D. Polyfunctional activity of Bacillus thuringiensis Berliner. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 3: 123-126 (in Russ.).
  27. Seo D.J., Nguyen D.M., Song Y.S., Jung W.J. Induction of defense response against Rhizoctonia solani in cucumber plant by endophytic bacterium Bacillus thuringiensis GS1. J. Microbiol. Biotechnol., 2012, 22(3): 407-415 CrossRef
  28. Martinez-Absalón S., Rojas-Solís D., Hernandez-León R., Prieto-Barajas C., Orozco-Mosqueda M., Peña-Cabriales J., Sakuda S., Valencia-Cantero E., Santoyo G. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci. Technol., 2014, 24(12): 1349-1362 CrossRef
  29. Jouzani GS., Valijanian E., Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol., 2017, 101(7): 2691-2711 CrossRef

back