doi: 10.15389/agrobiology.2018.5.938eng

UDC 633.521:581.1:581.4

 

THE RESPONSE OF in vitro CULTURED CELLS
OF Linum grandiflorum Desf. ON THE ACTION OF POLLUTANT
AND HERBICIDE

E.A. Goncharuk1, T.N. Nikolaeva1, L.V. Nazarenko2, E.A. Kalashnikova3, N.V. Zagoskina1

1Timiryazev Institute of Plant Physiology RAS, Federal Agency for Scientific Organizations, 35, ul. Botanicheskaya, Moscow, 127276 Russia, e-mail goncharuk.ewgenia@yandex.ru (✉ corresponding author), niktat2011@mail.ru, nzagoskina@mail.ru;
2Moscow City University, 4, 2-i Selskokhozyaistvennyi proezd, Moscow, 129226 Russia, e-mail nlv.mgpu@mail.ru;
3Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail kalash0407@mail.ru(✉ corresponding author)

ORCID:
Goncharuk E.A. orcid.org/0000-0002-9280-9450
Kalashnikova E.A. orcid.org/0000-0002-2655-1789
Nikolaeva T.N. orcid.org/0000-0003-1528-1020
Zagoskina N.V. orcid.org/0000-0002-1457-9450
Nazarenko L.V. orcid.org/0000-0002-2924-1612
The authors declare no conflict of interests

Received November 1, 2017

 

Under stress conditions, crops cannot reach the maximal level of productivity. Moreover, stress very often leads to plant death. Various stress factors limit the development and success of agricultural praxis. Under stress conditions, plants generate multicomponent metabolic, physiological and genetic responses which help them to adapt to suboptimal environment. At the level of cells, recent research has demonstrated that part of cellular content can be ‘eaten’ by the cell upon stress, producing energy and metabolites for survival. This process is known as autophagy (J.H. Hurley et al., 2017). Apart from this, some cells can die in the course of so-called programmed cell death (PCD), to provide better conditions for survival of other cells under stress (W.G. van Doorn et al., 2011). Both these processes are highly conservative in the evolution of eukaryotic organisms; they are very important for plant stress response and survival in suboptimal environment. Both autophagy and PCD are being intensively studied in yeast and animals since 1960ies. In plants, studies of autophagy and PCD began rather recently, and it should be kept in mind that these processes in plants bear several important features, which distinguish them from similar processes in heterotrophic eukaryotes. These features are related to the peculiar structures of plant cells. Nowadays, the problem of crop resistance to drought, salinity and extreme temperatures has become especially acute in a number of regions. Therefore, research on stress-induced autophagy is of special interest, as this process is most probably a universal component of the stress response to the abovementioned factors (V. Demidchik et al., 2017; M.E. Pérez-Pérez et al., 2017). Unraveling the mechanisms regulating the stress-induced autophagy and PCD may provide a key to genetic and chemical control of plants stress resistance, life cycle and productivity. Constitutive (i.e. not induced by stress) autophagy is an important mechanism of renewal of defect cell components; in plants, enhancement of autophagic flux by overexpression of the genes encoding autophagy-related proteins leads to an increase in stress resistance and to delayed senescence. In course of plant development, many types of plant cells undergo autophagy followed by PCD at the terminal stage of differentiation. In particular, autophagy and PCD are indispensable for seed germination, formation of vascular system and development of generative organs. Autophagy also participates in the regulation of leaf and petal senescence. So-called ‘nocturnal’ autophagy takes part in the degradation of transient leaf starch and sustains the assimilate transport to economically important plant organs such as fruit, tubers and storage roots. Thus, autophagy as a process directly affecting stress resistance, senescence and translocation of water and assimilates, represents a potentially very important target for regulation of plant functions, which thus far has not been used for generation of new crop varieties or in other applications in agriculture. The review discusses the structural types of autophagy (S. Reumann et al., 2010), molecular pathways of autophagy regulation (F. Reggiori et al., 2013) and cellular mechanisms of assembly of autophagic machinery, focusing on their potential use in agricultural technologies (Y.-Y. Chang et al., 2009; S. Han et al., 2015), first of all, to counterpart the deleterious effects of abiotic stress factors.

Keywords: autophagy, potassium, programmed cell death, senescence, stress, assimilate transport, crop yield.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett., 2010, 8(3): 199-216 CrossRef
  2. Titov A.F., Kaznina N.M., Talanova V.V. Tyazhelye metally i rasteniya [Heavy metals and plants]. Petrozavodsk, 2014 (in Russ.).
  3. Gupta S.D. Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants. CRC Press, 2010 CrossRef
  4. Sade N., del Mar Rubio-Wilhelmi, M., Umnajkitikorn, K., Blumwald, E. Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot., 2017, 69(4): 845-853 CrossRef
  5. Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 2002, 53(366): 1-11 CrossRef
  6. Sazanova K.A., Bashmakov D.I., Lukatkin A.S. Trudy Karel'skogo nauchnogo tsentra RAN, 2012, 2: 119-124 (in Russ.).
  7. Zagoskina N.V., Zubova M.Yu., Nechaeva T.L., Zhivukhina E.A. Visnik Khar'kivs'kogo natsional'nogo agrarnogo univesitetu, 2015, 3(36): 29-37 (in Russ.).
  8. Manquián-Cerda K., Escudey M., Zúñiga G., Arancibia-Miranda N., Molina M., Cruces E. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blue berry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotox. Environ. Safe., 2016, 133: 316-326 CrossRef
  9. Kudsk P., Streibig J.C. Herbicides — a two-edged sword. Weed Res., 2003, 43(2): 90-102 CrossRef
  10. Zhantasov K.T., Shalataev S.Sh., Kadirbaeva A.A., Alteev T.A., Zhantasov M.K., Zhantasova D.M., Kocherov E.N. Sovremennye naukoemkie tekhnologii, 2014, 12(2): 156-159 (in Russ.).
  11. Sviridov A.A., Shushkova T.V., Ermakova I.T., Ivanova E.V., Epiktetov D.O., Leont'evskii A.A. Prikladnaya biokhimiya i mikrobiologiya, 2015, 51: 183-190 CrossRef (in Russ.).
  12. Zaprometov M.N. Fenol'nye soedineniya [Phenolic compounds]. Moscow, 1993 (in Russ.).
  13. Cheynier V., Comte G., Davis K.M., Lattanzio V., Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Bioch., 2013, 72: 1-20 CrossRef
  14. Men'shchikova E.B., Lankin V.V., Zenkov N.K., Bondar' I.A., Krugovykh N.F., Trufankin V.A. Okislitel'nyi stress. Prooksidanty i antioksidanty [Oxydative stress. Pro- and antioxidants]. Moscow, 2006 (in Russ.).
  15. Rogers C.M. The systematics of Linum sect. Linopsis (Linaceae). Plant Syst. Evol., 1982, 140(2-3): 225-334 CrossRef
  16. Jhala A.J., Hall L.M. Flax (Linum usitatissimum L.): current uses and future applications. Australian Journal of Basic and Applied Sciences, 2010, 4(9): 4304-4312.
  17. Titok V., Lemesh V., Khotyleva L. Len kul'turnyi (klassifikatsiya, botanicheskaya i khozyaistvennaya kharakteristika, genetika, biotekhnologiya) [Cultivated flax — classification, botanical and economic characteristics, genetics, biotechnology]. Lap Lambert Academic Publishing GmbH&Co, 2012 (in Russ.).
  18. Zelentsov S.V., Moshnenko E.V., Ryabenko L.G. Maslichnye kul'tury. Nauchno-tekhnicheskii byulleten' Vserossiiskogo nauchno-issledovatel'skogo instituta maslichnykh kul'tur, 2016, 1(165): 106-121 (in Russ.).
  19. Cells and tissues in culture: methods, biology and physiology. E.N. Willmer (ed.). Elsevier, London, 1966 CrossRef
  20. Gaspar T., Franck T., Bisbis B., Kevers C., Jouve L., Hausman J.F., Dommes J. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul., 2002, 37(3): 263-285 CrossRef
  21. Polyakov A.V. Biotekhnologiya v selektsii l'na [Biotechnology techniques in flax breeding]. Tver', 2010 (in Russ.).
  22. McHughen A. Flax (Linum usitatissimum L.): in vitro studies. In: Legumes and oilseed crops I. Biotechnology in agriculture and forestry, vol. 10. Y.P.S. Bajaj (ed.). Springer, Berlin, Heidelberg, 1990: 502-514 CrossRef
  23. Goncharuk E.A., Zagoskina N.V. V³snik Khark³vs'kogo nats³onal'nogo agrarnogo un³versitetu, 2016, 3: 27-38 (in Russ.).
  24. Kulma A., Zuk M., Long S.H., Qiu C.S., Wang Y.F., Jankauskiene S., Szopa J., Preisner M., Kostyn K. Biotechnology of fibrous flax in Europe and China. Ind. Crop. Prod., 2015, 68: 50-59 CrossRef
  25. Van Uden W., Pras N., Woerdenbag H.J. Linum species (flax): in vivo and in vitro accumulation of lignans and other metabolites. In: Medicinal and aromatic plants VI. Biotechnology in agriculture and forestry, vol. 26. Y.P.S. Bajaj (ed.). Springer, Berlin, Heidelberg, 1994: 219-244 CrossRef
  26. Nosov A.M. Metody otsenki i kharakteristiki rosta kul'tur kletok vysshikh rastenii. Molekulyarno-geneticheskie i biokhimicheskie metody v sovremennoi biologii rastenii [Estimates of growth characteristics of higher plant cell cultures. Molecular genetics and biochemical methods in modern plant biology]. Moscow, 2011: 386-403 (in Russ.).
  27. Zaprometov M.N. V sbornike: Biokhimicheskie metody v fiziologii rastenii [Biochemical methods in plant [hysiology]. Moscow, 1971: 185-197 (in Russ.).
  28. Khoddami A., Wilkes M.A, Roberts T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2): 2328-2375 CrossRef
  29. Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1): 191-203 CrossRef
  30. Zagoskina N.V., Goncharuk E.A., Alyavina A.K. Fiziologiya rastenii, 2007, 54(2): 267-274 (in Russ.).
  31. Lydon J., Duke S.O. Pesticide effects on secondary metabolism of higher plants. Pestic. Sci., 1989, 25(4): 361-373 CrossRef

 

back