doi: 10.15389/agrobiology.2016.5.664eng

UDC 633.1:579.64

Acknowledgements:
The equipment of ARRIAM Center for Genome Technologies, Proteomics and Cell Biology (St. Petersburg) was used.
Supported by Russian Science Foundation (grant № 14-26-00094).

 

THE ALIGNMENT OF SOIL’S CONDITIONS FOR PLANT’S DEVELOPMENT DURING MICROBIAL DESTRUCTION OF PLANT’S RESIDUES BY MICROBIAL PREPARATIONS

O.V. Sviridova1, N.I. Vorobyov1, N.A. Provorov1, O.V. Orlova1,
I.V. Rusakova2, E.E. Andronov1, V.N. Pishchik3, A.A. Popov1,
Yu.V. Kruglov1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail Nik.IvanVorobyov@yandex.ru;
2All-Russian Research Institute for Organic Fertilizers and Peat, Federal Agency of Scientific Organizations, 2, ul. Pryanishnikova., pos. Vyatkino, Sudogodskii Region, Vladimir Province, Russia 601390,
e-mail rusakova.iv@yandex.ru;
3Agrophysical Research Institute, Federal Agency of Scientific Organizations, 14, Grazhdanskii pr., St. Petersburg, Russia 195220,
e-mail veronica-bio@rambler.ru

Received November 20, 2015

 

Modern agriculture is developing in the direction of producing consistently high yields and high quality seed production. In this regard, the precision agricultural technologies are develop for the leveling a soil conditions. Individual phenotypic characteristics of plant are determined by the local soil conditions near their root’s systems. As a result, the variance of plant’s height is dependent on the spatial distribution of energy resources and nutrients in the soil. The variance of plant's height restricted to the genetic norm for this characteristic and it can been reduced when a soil conditions are leveled. In experiments with planting alfalfa was been shown, that the variance of plant’s mass may decrease with an increase in the efficiency of plant-microbial symbiosis. Perhaps the plant-microbial symbiosis is able to level a soil conditions and selectively stimulate the plants by using of the microbial metabolites. We assume that the effect of microbiological leveling soil conditions (MLSC) may be observed during destruction of plant’s residues using microbial preparation. Previously, MLSC effect has not studied. Therefore, these theoretical and experimental researches are new. In addition, we have obtained new practically important results thanks to the use of the original fractal analysis of molecular-genetic data of the soil microbial community.  The goal of this work was experimental and theoretical study of MPSC effect arising after destruction of plant’s residues with the using of the microbial preparations, which was been developed in the All-Russian Research Institute of Agricultural Microbiology. To achieve this goal were used the data of two experiments. In the first experiment, the variances of the barley plant’s height were been investigated after the destruction of plant residues using a microbial preparation Barkon. Out the second experiment used data of the molecular-genetic analysis of soil microbial communities after the destruction of plant’s residues using three microbial preparations: Barkon, Bags and Omug. The preparation Barkon contains the consortium of bacteria and fungi; Bugs is a consortium of cellulolytic organisms, derived from biologically active soil; Omug is the microbial fertilizer obtained after biotechnological processing of poultry manure. The functional activity of microbial networks arising during the destruction of plant’s residues with using of microbial preparations was been studied using fractal analysis of molecular genetic data of microbial communities in soil. With using of the fractal analysis was been obtained the fractal taxonomic portrait of microbial communities and the index of the functional efficiency of microbial network formations, which were formed during destruction of plant’s residues. The first experiment showed that the using of preparations for the destruction of plant's residues leads to a gradual leveling of the soil’s conditions and to reducing of the variance of plant's heights, which were been grown on these soils. Without these preparations, the dispersion of plant's heights increases with each successive year. From this, it follows that these preparations may initiate the effective microbial networks that are able to save the energy resources and the nutrients distributing them evenly in the soil. The molecular-genetic data from second experiment confirmed that the functional efficiency of the microbial networks after using preparations significantly increases due to better organization of destructive processes. The results of this study suggest that the destruction of plant’s residues by using of the special preparations is a necessary and effective complement of the modern precision agro technologies. Thus, the microbial preparations for destruction plant's residues start processes which lead to the restoration of the required level of energy resources and nutrients in the soil, to the leveling of  resources in soil's space, to the increasing the stability of yields and to the improving the quality of plant’s products.

Keywords: the destruction of plant’s residues with using of the microbial preparations; the microbial destructive communities in the soil; the dispersion of the individual heights of plants, the fractal-taxonomic portrait of the microbial community; the index of the functional efficiency of microbial networks.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES 

  1. Yakushev V.P., Yakushev V.V. Informatsionnoe obespechenie tochnogo zemledeliya [Informatics support of precision agriculture]. St. Petersburg, 2007 (ISBN 5-86763-181-8) (in Russ.).
  2. McBratney A., Whelan B., Ancev T., Bouma J. Future directions of precision agriculture. Precision Agriculture, 2005, 6: 7-23 CrossRef
  3. Zhang X., Shi L., Jia X., Seielstad G., Helgason C. Zone mapping application for precision-farming: A decision support tool for variable rate application. Precision Agriculture, 2010, 11(2): 103-114 CrossRef
  4. Gebbers R., Adamchuk V.I. Precision agriculture and food security. Science, 2010, 327: 828-831 CrossRef
  5. Nikkilä R., Seilonen I., Koskinen K. Software architecture for farm management information systems in precision agriculture. Comput. Electron. Agric., 2010, 70(2): 328-336 CrossRef
  6. Inge-Vechtomov S.G. Genetika s osnovami selektsii: uchebnik dlya studentov vysshikh uchebnykh zavedenii [Genetics and fundamentals of breeding]. St. Petersburg, 2010 (in Russ.).
  7. Griffiths A.J.F., Miller J.H., Suzuki D.T., Lewontin R.C., Gelbart W.M. Norm of reaction and phenotypic distribution. An introduction to genetic analysis. NY, 2000  (ISBN 0-7167-3520-2).
  8. Avdeev Yu.I., Morozova L.V., Avdeev A.Yu., Kigashpaeva O.P. Astrakhanskii vestnik ekologicheskogo obrazovaniya, 2014, 28(2): 114-120 (in Russ.).
  9. Avdeev Yu.I. Geneticheskii analiz kolichestvennykh priznakov rastenii [Genetic analysis of quantitative traits in plants]. Astrakhan', 2003 (in Russ.).
  10. Guzhov Yu.L., Gneim A.R. Genetika, 1982, 18(2): 82-99 (in Russ.).
  11. Tikhonovich I.A., Provorov N.A. Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego [Microbial-plant symbiosis: molecular genetics of prospective agrosystems]. St Petersburg, 2009 (in Russ.).
  12. Lugtenberg B.J.J., de Weger L.A., Bennett J.W. Microbial stimulation of plant growth and protection from disease. Current Opinion in Biotechnology, 1991, 2(3): 457-464 CrossRef
  13. Mordukhova E.A., Kochetkov V.V., Polikarpova F.Ya., Boronin A.M. Prikladnaya biokhimiya i mikrobiologiya, 1998, 34(3): 287-292 (in Russ.).
  14. Zavalin A.A. Biopreparaty, udobreniya i urozhai [Biologicals, chemicals and crop yield]. Moscow, 2005 (in Russ.).
  15. Vorob'ev N.I., Sviridova O.V., Popov A.A., Rusakova I.V., Petrov V.B. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 88-93 Available http://www.agrobiology.ru/3-2011vorobiev.html. No date (in Russ.).
  16. Vorob'ev N.I., Provorov N.A., Pishchik V.N., Sviridova O.V. Programma dvukhfaktornogo dispersionnogo analiza biologicheskikh dannykh. Programma zaregistrirovana v FGU FIPS v otdele registratsii programm dlya EVM № 2014661477 ot 30.10.2014. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2014661477 ot 30.10.2014 [Computer Program for two-factor scheme of dispersion analysis of biological data. State Reg. Cert. № 2014661477. Registered October 30, 2014]. Available http://www1.fips.ru/wps/portal/Registers/. No date (in Russ.).
  17. Orlova O.V., Andronov E.E., Vorob'ev N.I., Kolodyazhnyi A.Yu., Moskalevskaya Yu.P., Patyka N.V., Sviridova O.V. Composition and functioning of microbial communities in the decomposition of straw cereals in sod podzolic soil. Agricultural Biology, 2015, 50(3): 305-314 CrossRef (In Engl.).
  18. Kruglov Yu.V., Paromenskaya L.N. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 76-80 Available http://www.agrobiology.ru/3-2011kruglov.html. No date (in Russ.).
  19. Arkhipchenko I.A., Barbolina I.I., Deriks P. Doklady Rossel'khozakademii,  1998, 6: 18-19 (in Russ.).
  20. Bryukhanov A.A., Netrusov A.I., Rybak K.E. Molekulyarnaya mikrobiologiya [Molecular microbiology]. Moscow, 2012 (ISBN 978-5-211-05486-8) (in Russ.).
  21. Vorob'ev N.I., Provorov N.A., Sviridova O.V. Materialy IV Vserossiiskoi nauchno-prakticheskoi konferentsii «Biologicheskiesistemy: ustoichivost', printsipy imekhanizmy funktsionirovaniya» [Proc. IV Conf. «Biological systems: sustainability, principles and functioning»]. Nizhnii Tagil, 2012, vypusk 1: 103-106 (in Russ.).
  22. Voskresenskaya O.L., Skochilova E.A., Kopylova T.I., Alyabysheva E.A., Sarbaeva E.V. Organizm i sreda: faktorial'naya ekologiya [An organism and its environment — factorial ecology]. Ioshkar-Ola, 2005 (ISBN 5-94808-149-4) (in Russ.).
  23. Losa G.A., Merlini D., Nonnenmacher T.F., Weibel E.R. Fractals in biology and medicine. Vol. IV. Berlin, 2005.
  24. Akbar S. Fractal analysis in chemistry and biology. An Introduction. Lambert Academic Publisher, 2010 (ISBN: 978-3-8433-7905-2).
  25. Jones C.L., Jelinek H.F. Wavelet packet fractal analysis of neuronal morphology. Methods, 2001, 24(4): 347-358 CrossRef
  26. Ristanovic D., Nedeljkov V., Stefanovic B.D., Miloševic N.T., Grgurevic M., Stulic V. Fractal and nonfractal analysis of cell images: comparison and application to neuronal dendritic arborization. Biological Cybernetics, 2002, 87(4): 278-288 CrossRef
  27. Sviridova O.V., Vorob'ev N.I., Popov A.A. Materialy III Mezhdunarodnoi nauchnoi Internet-konferentsii «Biotekhnologiya. Vzglyad v budushchee» [Proc. III Int. online Conf. «Biotechnology. A look into the future»]. Kazan', 2014, 2: 102-106 (in Russ.).
  28. Schroeder M. Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya [Fractals, chaos, power laws: minutes from an infinite paradise]. Izhevsk, 2001 (ISBN 5-93972-041-2) (in Russ.).
  29. Bogatykh B.A. Fraktal'naya priroda zhivogo: sistemnoe issledovanie biologicheskoi evolyutsii i prirody soznaniya [Fractal character of life: study of biological evolution and the consciousness]. Moscow, 2012 (ISBN 978-5-397-02429-7) (in Russ.).
  30. Ezekiel S. Medical Image Segmintation using multifractal analysis. Proc. of the App. Informatics, 2003, 378: 220-224.
  31. Lopes R., Betrouni N. Fractal and multifractal analysis: a review. Medical Image Analysis, 2009, 13(4): 634-649 CrossRef
  32. Seuront L. Fractals and multifractals in ecology and aquatic scince. UK: CRC Press, 2009.
  33. Takahashi T., Murata T., Narita K., Hamada T., Kosaka H., Omori M., Takahashi K., Kimura H., Yoshida H., Wada Y. Multifractal analysis of deep white matter microstructural changes on MRI in relation to early-stage atherosclerosis. NeuroImage, 2006, 32(3): 1158-1166 CrossRef
  34. Tian Y.-C., Yu Z.-G., Fidge C. Multifractal nature of network induced time delay in networked control systems. Physics Letters A, 2007, 361(1): 103-107 CrossRef
  35. Young I.M., Crawford J.W. Interactions and self-organization in the soil-microbe complex. Science, 2004, 304: 1634-1637 CrossRef
  36. Crawford J.W., Deacon L., Grinev D., Harris J.A., Ritz K., Singh B.K.,  Young I. Microbial diversity affects self-organization of the soil-microbe system with consequences for function. Journal the Royal Society Interface, 2012, 9: 1302-1310 CrossRef
  37. Vorob'ev N.I., Sviridova O.V., Patyka N.V., Dumova V.A., Mazirov M.A., Kruglov Yu.V. Materialy Mezhdunarodnoi konferentsii «Biodiagnostika v ekologicheskoi otsenke pochv i sopredel'nykh sred» [Proc. Int. Conf. «Biotests in ecological assessment of soils and adjacent environments»]. Moscow, 2013: 38 (in Russ.).
  38. Netrusov A.I., Kotova I.B. Mikrobiologiya [Microbiology]. Moscow, 2006 (in Russ.).

back