doi: 10.15389/agrobiology.2016.5.722eng

UDC 633.1:632.4.01/06:575.174

Acknowledgements:
The authors thank Dr. S.B. Goodwin (USDA-ARS, Crop Production and Pest Control Research Unit, Small Grain Fungal Disease Laboratory, USA) for kindly providing seeds of the wheat varieties with known resistance genes Stb1-Stb8.
Supported financially by International Science and Technology Center (ISTC, Kazakhstan)

 

GENETIC STRUCTURE OF REGIONAL POPULATIONS OF Mycosphaerella graminicola (Septoria tritici), THE SEPTORIA LEAF BLOTCH AGENT OF WHEAT

E.V. Pakholkova, N.N. Sal’nikova, N.A. Kurkova

All-Russian Research Institute of Phytopathology, Federal Agency of Scientific Organizations, 5, Institute, pos. Bol’shie Vyazemy, Odintsovskii Region,Moscow Province, 143050 Russia,
e-mail pakholkova@vniif.ru

Received February 26, 2016

 

Mycosphaerella graminicola (anamorph Septoria tritici), the causal agent of septoria tritici blotch (STB) of wheat, is dominating species in Septoria/Stagonospora complex on crops in the main grain-producing areas of Russia. Resistance to STB may be either quantitative (horizomtal) or isolate-specific (vertical). At present 17 genes for resistance have been identified (Stb1-Stb17). The gen-for-gen interaction in the «wheat-M. graminicola» pathosystem has been demonstrated by genetic analysis; therefore, the aviability of resistance genes in the host proposes the existence of specific virulence genes in the pathogen. The relative frequency of virulence genes within a geographic region may be calculated as a fraction of the isolates expressing this virulence genes from the overall number of isolates used in the study. The purpose of the present study was to estimate the virulence genes in populations of M. graminicola from different geographic regions of Russia on the basis of a gen-for-gen relationship, using the cultivars with known resistance genes, i.e. Bulgaria 88 (Stb1), Oasis (Stb1), Veranopolis (Stb2), Israel 493 (Stb3), Tadinia (Stb4), CS/Synthetic 7D (Stb5), Flame (Stb6), Estanzuela Federal (Stb7), W7984 (Stb8). A total of 47 isolates from the North-Caucasian region, 66 isolates from the Central-Chernozem region, 29 isolates from the Volga region, 64 isolates from the Central region, and 34 isolates from the North-West region were tested under greenhouse and grows chamber conditions. The virulence was estimated on seedlings at two-leaf stage, using two parameters, the infection degree of plants and sporulation of fungus in vivo. The effectiveness of Stb-genes to each regional population of M. graminicola was revealed on the basis of the frequency of virulence genes. The regional populations of M. graminicola differed in virulence genotype, spectrum and frequency of virulence genes. The populations from south zone (the North-Caucasian, the Central-Chernozem and the Volga regions) are more virulent in comparison with the central and the north-west populations. For example, 19.2 % of isolates from the north-caucasian population and 6.0 % of isolates from the central-chernozem population have no virulence genes, while in the central and north-west populations — 42.2 % and 44.1 %, respectively. Isolates from the Volga population of M. graminicola had most various combinations of virulence genes. High frequency of virulence to genes Stb1, Stb5 and Stb7 was revealed in all populations. The genes Stb2, Stb3, Stb4 have considerable effectiveness to the central, the central-chernozem and the north-west populations of M. graminicola, however it distinctly reduced concerning isolates from the North-Caucasian and the Volga regions. The genes Stb6 and Stb8 were highly effective (Stb8 — absolutely effective) to all investigated Russian populations of M. graminicola and may be recommended for using in selection as sources of resistance to STB.

Keywords: Mycosphaerella graminicola, population, isolate, virulence genes, frequency, effectiveness of Stb-genes.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES 

  1. Eyal Z., Amari Z., Whal I. Physiological Specialization of Septoria tritici. Phytopathology, 1973, 63: 1087-1091.
  2. Eyal Z., Scharen A.L., Huffman M.D., Prescott J.M. Global insights into virulence frequencies of Mycosphaerella graminicola. Phytopathology, 1985, 75: 1456-1462.
  3. Kema G.H.J., Annone J.G., Sayoud R., Van Silfhout C.H., Van Gincel M., de Bree J. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interaction between pathogen isolates and host cultivars. Phytopathology, 1996, 86: 200-212.
  4. Kema G.H.J., Verstappen E.C.P., Waalwijk C. Avirulence in the wheat Septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus. Mol. Plant-Microbe Interact., 2000, 13: 1375-1379 CrossRef
  5. McCartney C.A., Brule-Babel A.L., Lamari L. Inheritance of race-specific resistance to Mycosphaerella graminicola in wheat. Phytopathology, 2002, 92: 138-144 CrossRef
  6. Kema G.H.J., Goodwin S.B., Hamza S., Verstappen E.C.P., Cavaletto J.R., van der Lee T.A.J., Hagenaar-de Weerdt M., Bonants P.J.M., Waalwijk C. A combined AFLP and RAPD genetic linkage map of Mycosphaerella graminicola, the septoria tritici leaf blotch pathogen of wheat. Genetics, 2002, 161: 1497-1505.
  7. Brading P.A., Verstappen E.C.P., Kema G.H.J., Brown K.M. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology, 2002, 92: 439-445 CrossRef
  8. Adhikari T.B., Anderson J.M., Goodwin S.B. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 2003, 93: 1158-1164 CrossRef
  9. Adhikari T.B., Cavaletto R., Dubcovsky J., Giego J., Schlatter A., Goodwin S.B. Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology, 2004, 94: 1198-1206 CrossRef
  10. Adhikari T.B., Wallwork H., Googwin S.B. Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop
    Sci
    ., 2004, 44: 1403-1411 CrossRef
  11. Arraiano L.S., Chartrain L., Bossolini E., Slatter H.N., Keller B., Brown J.K.M. A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol., 2007,56: 73-78 CrossRef
  12. Chartrain L., Sourdille P., Bernard M., Brown J.K.M. Identification and location of Stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathol., 2009, 58: 547-555 CrossRef
  13. Liu Y., Zhang L., Thompson I.A., Goodwin S.B., Ohm H. Molecular mapping re-locates the Stb2 gene for resistance to Septoria tritici blotch derived from cultivar Veranopolis on wheat chromosome 1BS. Euphytica, 2012, 190: 145-156 CrossRef
  14. Goodwin S.B., Cavaletto J.R., Hale I.L., Thompson I., Xu S.S., Adhikari T.B., Dubcovsky J. A new map location of geneStb3 for resistance to Septoria tritici blotch in wheat. Crop Sci., 2015, 55: 35-43 CrossRef
  15. Tabib Ghaffary M.S., Laurent V., Guerreiro L., Flodrops Y., van der Lee T.A.J., Kema G.H.J., Demarquet T., Cuveliers S., Robert O. Unravelling and exploitation of diversity for resistance to Mycosphaerella graminicola and Fusarium graminearum in wheat and its progenitors. In: Actes de la rencontre scientifique«Synthèse des programmes de recherché FSOV (Fonds de Soutien à l'Obtention Végétale)» (8 janvier 2008, Paris, France). Groupement national interprofessionnel des semences et plants (GNIS), Section Céréales et Protéagineux, Paris, 2009: 31-38 (ISBN 9782952964401).
  16. Chartrain L., Brading P.A., Brown J.K.M. Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol., 2005, 54: 134-143 CrossRef
  17. Zeleneva Yu.V., Sudnikova V.P. Voprosy sovremennoi nauki i praktiki, 2014, 2(51): 15-20 (in Russ.).
  18. Nelson L.R., Marshall D. Breeding for resistance to Septoria nodorum and Septoria tritici. Adv. Agron., 1990, 44: 257-277.
  19. Kema G.H.J., Yu D.Z., Rijkenberg F.H.J., Shaw M.W., Baayen R.P. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology, 1996, 86: 777-786.
  20. Somasco O.A., Quaiset C.O., Gilchrist D.G. Single-gene resistance to Septoria tritici blotch in the spring wheat cultivar ‘Tadinia’. Plant Breeding, 1996, 115: 261-267 CrossRef
  21. Rosielle A.A. Sources of resistance in wheat to speckled leaf blotch caused by Septoria tritici. Euphytica, 1972, 21: 152-161.
  22. Saadaoui E.M. Physiologic specialization of Septoria tritici in Morocco. Plant Dis., 1987, 71(2): 153-165.
  23. Gough F.I. Effect of wheat host cultivars on pycnidiospore production by Septoria tritici. Phytopathology, 1978, 68(9): 1343-1345.
  24. Sanina A.A. Mikologiya i fitopatologiya, 1991, 25(4): 338-342 (in Russ.).
  25. Pyzhikova G.V., Sanina A.A., Kurakhtanova T.I., Davydova E.P., Porodenko V.V., Sanin S.S., Vasetskaya M.N., Chigirev S.M., Dubynina T.S., Moskvitin E.V., Katukova N.P. Septoriozy zernovykh kul'tur: metod. ukaz [Septoria diseases in cereal crops: guidelines]. Moscow, 1988 (in Russ.).
  26. Sanina A.A., Antsiferova L.V. Mikologiya i fitopatologiya, 1989, 23(2): 172-175 (in Russ.).
  27. Sanina A.A., Antsiferova L.V. Mikologiya i fitopatologiya, 1991, 25(2): 155-159 (in Russ.).

back