PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.776eng

UDC: 636.2:619:579.62:579.842.11

Acknowledgements:
Supported financially from the Russian Foundation for Basic Research, grant No. 19-316-90041 “Whole-genome sequencing of bacilli strains isolated from the cicatricial contents of various ruminants”.

 

CATTLE COLIBACILLOSIS IN PERM KRAI: PREVALENCE, SOURCES OF THE CAUSATIVE AGENT AND ITS BIOLOGICAL CHARACTERIZATION

I.N. Zhdanova1, V.V. Mokrushin2, M.V. Kuznetsova3

1Perm Federal Research Center, Perm Research Institute of Agriculture, Ural Branch RAS, 12, ul. Kulyury, Lobanovo, Perm Krai, 614532 Russia, e-mail saratov_perm@.ru;
2Perm Veterinary Diagnostic Center, 35, ul. Ekskavatornaya, Perm, 614065 Russia, e-mail 89124892212@mail.ru;
3Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch RAS, 13, ul. Goleva, Perm, 614000 Russia, e-mail mar@iegm.ru (✉ corresponding author)

ORCID:
Zhdanova I.N. orcid.org/0000-0002-0260-6917
Kuznetsova M.V. orcid.org/0000-0003-2448-4823
Mokrushin V.V. orcid.org/0000-0001-8272-8828

Received March 30, 2022

Infectious diseases in agricultural enterprises of the Russian Federation are annually recorded in 50 % of the livestock, while the death of young calves during the first weeks of life ranges from 14 to 60 %. Colibacillosis remains the main infectious pathology in terms of morbidity and mortality, despite the widespread use of modern antibiotics and vaccines. To assess the prevalence of colibacillosis among cattle and identify the source of the infectious agent, for the first time an integrated approach was used covering a triad of sick animals—healthy animals—environment, which is of theoretical significance because it contributes to a better understanding the patterns of the epizootic process. An important practical aspect of the work was the analysis of data from long-term sanitary and zoo-hygienic records, which indicates that the control of the risk of Escherichia coli infections should be aimed not only at the natural reservoirs but also at the environment factors. The purpose of the study was to assess the prevalence of colibacillosis in cattle in various agricultural enterprises of the Perm Territory and to study the biological properties of the pathogen. To assess the Escherichia coli contamination of inventory, feeding and watering systems, data from sanitary and zoo-hygienic studies were analyzed. The incidence of the infections in cattle was summarized based on the reports from the Perm Veterinary Diagnostic Center, the livestock department of the Ministry of Agriculture of the Perm Krai for 2010-2020, statistical data from the Department of Veterinary Medicine of the Perm Krai and form laboratory records. The reports also covered bacteriological data for 22,480 samples from beef and dairy farms (n = 146). Sanitary and zoo-hygienic analyses of swabs from dairy equipment, inventory of slaughterhouses, feed of plant and animal origin, mixed feed were carried out for 29,207 samples from the same farms. The antigenic structure of the E. coli isolates was determined. The sensitivity of strains to antibacterial drugs was assayed by disk diffusion method (ampicillin 10 µg, cefoxitin 30 µg, ceftriaxone 30 µg, cefepime 30 µg, meropenem 10 µg, imipenem 10 µg, aztreonam 30 µg, amikacin 30 µg, gentamicin 10 µg, ciprofloxacin 5 µg, levofloxacin 5 µg, moxifloxacin 5 µg, tetracycline 30 µg, chloramphenicol 30 µg). In a prospective study (2020-2021), the prevalence of Shiga toxin-producing E. coli (STEC) strains in a population of healthy animals was assessed. Cultures (n = 61) were isolated from cattle feces. Genes encoding Shiga toxins 1 and 2 (stx1 and stx2) were detected by polymerase chain reaction at the end point. The research results indicate that in recent years the prevalence of colibacillosis in the Perm Krai does not exceed 20 %. An increased number of dead animals and sick animals with diarrheal syndrome corresponded to a decreased immunization of pregnant cows. There were sporadic cases of the disease, but the risk of horizontal transmission of the pathogen, including through environmental objects, was high. E. coli was mostly isolated from swabs from dairy equipment and inventory of slaughterhouses, as well as from animal feed. Five most epizootically significant serogroups were identified, the E. coli O8, O15, O20, O101, and O115; in rare cases, E. coli O157 was isolated. The antibiotic resistance profiles of E. coli strains isolated from sick, dead and healthy animals did not differ significantly, except for tetracycline and chloramphenicol, resistance to which was significantly higher in E. coli strains of the first group. Of note is the higher proportion of cultures resistant to ampicillin and ciprofloxacin in the E. coli subpopulation from healthy cattle. In addition, the stx1 (2.0 %) and stx2 (6.1 %) genes were found in E. coli from healthy cattle. That is, our data confirm that pathogens can persist in the gastrointestinal tract of both sick and healthy farm animals, which become the source of STEC. Additional sources of E. coli infection, including STEC strains, are drinking water, feed, and other abiotic components.

Keywords: cattle, colibacillosis, Escherichia coli, Shiga-like toxins, on-farm contamination.

 

REFERENCES

  1. Prikaz Minsel’khoza Rossii ot 20.12.2019 № 713 «Ob opredelenii 56 prioritetnykh napravleniy razvitiya agropromyshlennogo kompleksa po sub’ektam Rossiyskoy Federatsii na 2020 god» [Order of the Ministry of Agriculture of Russia dated December 20, 2019 No. 713 “On 56 priority areas for the development of the agro-industrial complex in the Russian Federation for 2020”](in Russ.).
  2. Vartanova M.L., Gazimagomedova P.K. Prodovol’stvennaya politika i bezopasnost’, 2018, 5(1): 37-46 CrossRef (in Russ.).
  3. Zhdanova I.N. Vestnik PFITs, 2019, 4: 63-68 (in Russ.).
  4. March M.D., Haskell M.J., Chagunda M.G., Langford F.M., Roberts D.J. Current trends in British dairy management regimens. Journal of Dairy Science, 2014, 97(12): 7985-7994 CrossRef
  5. Mandel R., Whay H.R., Klement E., Nicol C.J. Invited review: Environmental enrichment of dairy cows and calves in indoor housing. Journal of Dairy Science, 2016, 99(3): 1695-1715 CrossRef
  6. Tambiev T.S., Tazayan A.N., Byvaylov V.P., Koshlyak V.V. Veterinarnaya patologiya, 2015, 3: 5-10 (in Russ.).
  7. Algers B., Bertoni G., Broom D., Hartung J., Lidfors L., Metz J. Munksgaard L., Pina T.N., Oltenacu P., Rehage J., Rushen J. Scientific report on the effects of farming systems on dairy cow welfare and disease. Annex to the EFSA Journal, 2009, 1143: 1-38 CrossRef
  8. Motuzko S.N. Uchenye zapiski UO VGAVM, 2015, 51(1): 84-87 (in Russ.).
  9. Ivanov A.I., Baymurzin I.B. Vestnik BGAU, 2010, 4: 24-31 (in Russ.).
  10. Nasertdinov D.D., Spiridonov A.G., Makhmutov A.F., Spiridonov G.N., Makaev Kh.N. Uchenye zapiski KGAVM im. N.Е. Baumana [Scientific notes of the N.E. Bauman KGAVM]. Kazan’, 2016, 226(2): 120-123 (in Russ.).
  11. Kashin A.S., Zazdravnykh M.I., Shkil’ N.A. Kolibakterioz telyat v sovremennykh еkologicheskikh usloviyakh Sibiri (Osobennosti еpizootologii, klinicheskie proyavleniya, patogenez, diagnostika, mery profilaktiki i bor’by) [Colibacillosis of calves in modern ecological conditions of Siberia (Peculiarities of epizootology, clinical manifestations, pathogenesis, diagnosis, prevention and control measures)]. Barnaul, 2003 (in Russ.).
  12. Bashahun G.M., Amina A. Colibacillosis in calves: a review of literature. Journal of Animal Science and Veterinary Medicine Volume, 2017, 2(3): 62-71 CrossRef
  13. Cho Y., Yoon K.J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci., 2014, 15(1): 1-17 CrossRef
  14. Ovod A.S. Irskiy A.G., Sidorenko N.M. Sistema profilakticheskikh meropriyatiy i kontrol’ za ikh vypolneniem pri bakterial’nykh i virusnykh zabolevaniyakh telyat [Preventive measures and control over their implementation in bacterial and viral diseases of calves]. Novocherkassk, 2001 (in Russ.).
  15. Sukharev Yu.S. Identifikatsiya termostabil’nogo еnterotoksina Escherichia coli pri kolibakterioze telyat. Vіsnik Dnіpropetrovs’kogo unіversitetu. Bіologіya. Meditsina, 2011, 2(1): 114-119 (in Russ.).
  16. Zazdravnykh M.I., Kashin A.S., Kuchina L.A. Sibirskiy vestnik sel’skokhozyaystvennoy nauki, 2003, 3(149): 41-44 (in Russ.).
  17. Gruenberg W. Overview of Coli-septicemia. Merck Manual, 2014.
  18. Kaper J.B., Nataro J.P., Mobley H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2004, 2(2): 123-140 CrossRef
  19. Fairbrother J.M., Nadeau E. Escherichia coli: on-farm contamination of animals. Rev. Sci. Tech., 2006, 25(2): 555-569.
  20. Kremleva A., Skomorina Yu., Belousov V., Varentsova A., Polosenko O., Shepelin A. Kombikorma, 2020, 3: 68-70 (in Russ.).
  21. Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 1991, 19(24): 6823-6831 CrossRef
  22. Huey B., Hall J. Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. Journal of Bacteriology, 1989, 171(5): 2528-2532 CrossRef
  23. Chapman T.A., Wu X.-Y., Barchia I., Bettelheim K.A., Driesen S., Trott D., Wilson M., Chin J.J.-C. Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl. Environ. Microbiol, 2006, 72(7): 4782-4795 CrossRef
  24. Khuramshina M.T., Makhmutov A.F., Spiridonov G.H., Makaev Kh.N. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.Е. Baumana, 243(3): 280-284 (in Russ.).
  25. Terekhov V.I. Veterinariya Kubani, 2016, 3: 15-18 (in Russ.).
  26. Petrukhin M.A., Shul’ga N.N., Zhelyabovskaya D.A. Vestnik KrasGAU, 2012, 12: 113-116 (in Russ.).
  27. Chkhenkeli V.A., Glushenkova T.V. Aktual’nye voprosy agrarnoy nauki, 2012, 2: 30-37 (in Russ.).
  28. Lomako Yu.V., Androsik N.N. Izvestiya Akademii agrarnykh nauk Respubliki Belarus’, 2002, 2: 70-72 (in Russ.).
  29. Kartsev N.N., Svetoch Е.A. Bakteriologiya, 2018, 3(1): 7-12 (in Russ.).
  30. Onishchenko G.G., Dyatlov I.A., Svetoch Е.A., Volozhantsev N.V., Bannov V.A., Kartsev N.N., Borzenkov V.N., Fursova N.K., Shemyakin I.G., Bogun A.G., Kislichkina A.A., Popova A.V., Myakinina V.P., Teymurazov M.G., Polosenko O.V., Kaftyreva L.A., Makarova M.A., Matveeva Z.N., Grechaninova T.A., Grigor’eva N.S., Kicha E.V., Zabalueva G.V., Kutasova T.B., Korzhaev Yu.N., Bashketova N.S., Bushmanova O.N., Stalevskaya A.V., Chkhindzheriya I.G., Zhebrun A.B. Vestnik RAMN, 2015, 1: 70-81 (in Russ.).
  31. Weinroth M.D., Clawson M.L., Arthur T.M., Wells J.E., Brichta-Harhay D.M., Strachan N., Bono J.L. Rates of evolutionary change of resident Escherichia coli O157:H7 differ within the same ecological niche. BMC Genomics,2022, 23(1): 275 CrossRef
  32. Kashin A.S., Kashina G.V. Mat. VI Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktual’nye problemy sel’skogo khozyaystva gornykh territoriy»[Proc. VI Int. Conf. «Сurrent challenges of agriculture in mountainous areas»]. Gorno-Altaysk, 2017 (in Russ.).
  33. Staji H., Tonelli A., Zahraei Salehi T., Mahdavi A., Shahroozian E., Salimi Bejestani M., Mahdizade Mood S., Keywanloo M., Ahmadi Hamedani M., Emadi Chashmi H., Ashrafi Tamai I., Atefi Tabar E. Distribution of antibiotic resistance genes among the phylogroups of Escherichia coli in diarrheic calves and chickens affected by colibacillosis in Tehran, Iran. Archives of Razi Institute, 2018, 73(2): 131-137 CrossRef
  34. Sobhy N.M., Yousef S.G.A., Aboubakr H.A., Nisar M., Nagaraja K.V., Mor S.K., Valeris-Chacin R.J., Goya S.M. Virulence factors and antibiograms of Escherichia coli isolated from diarrheic calves of Egyptian cattle and water buffaloes. PLoS ONE, 2020, 15(5): e0232890 CrossRef
  35. Zabrovskaya A.V. Еpizootologicheskiy analiz rasprostraneniya antibiotikorezistentnykh shtammov vozbuditeley infektsionnykh bolezney sel’skokhozyaystvennykh zhivotnykh v severo-zapadnom federal’nom okruge Rossiyskoy Federatsii. Doktorskaya dissertatsiya [Epizootological study of spreading antibiotic-resistant strains of farm animal pathogens in the Northwestern Federal District of the Russian Federation. DSc Thesis]. St. Petersburg, 2019 (in Russ.).
  36. Sato T., Okubo T., Usui M., Yokota S., Izumiyama S., Tamura Y. Association of veterinary third-generation cephalosporin use with the risk of emergence of extended-spectrum-cephalosporin resistance in Escherichia coli from dairy cattle in Japan. PLoS ONE, 2014, 9(4): e96101 CrossRef
  37. Ali D.A., Tesema T.S., Belachew Y.D. Molecular detection of pathogenic Escherichia coli strains and their antibiogram associated with risk factors from diarrheic calves in Jimma Ethiopia. Sci. Rep., 2021, 11: 14356 CrossRef
  38. Madoshi B.P., Kudirkiene E., Mtambo M.M., Muhairwa A.P., Lupindu A.M., Olsen J.E. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania. PLoS ONE, 2016, 11(12): e0168160 CrossRef
  39. Cookson A.L. The prevalence of Shiga toxin-producing Escherichia coli in cattle and sheep in the lower North Island, New Zealand. New Zealand Veterinary Journal, 2006, 54(1): 28-33 CrossRef
  40. Fagan P.K., Hornitzky M.A., Bettelheim K.A., Djordjevic S.P. Detection of shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Applied and Environmental Microbiology, 2020, 65(2): 868-872 CrossRef
  41. Gyles C.L. Shiga toxin-producing Escherichia coli: an overview. Journal of Animal Science,2007, 85(13): E45-62 CrossRef
  42. Dzhupina S.I. Teoriya еpizooticheskogo protsessa [Theory of the epizootic process]. Moscow, 2004 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)