PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.743eng

UDC: 636.52/.58:616-099:636.087.7:579

Acknowledgements:
Supported financially from the Russian Science Foundation (grant No. 20-76-10003)

 

COMPOSITION AND METABOLIC POTENTIAL OF THE INTESTINAL MICROBIOME OF Gallus gallus L. BROILERS UNDER EXPERIMENTAL T-2 TOXICOSIS AS INFLUENCED BY FEED ADDITIVES

E.A. Yildirim1, 2, A.A. Grozina3, V.G. Vertiprakhov3, L.A. Ilina1, 2,
V.A. Filippova1, 2, G.Y. Laptev1, 2, E.S. Ponomareva1, A.V. Dubrovin1,
K.A. Kalitkina1,2, V.V. Molotkov1, D.A. Ahmatchin1, E.A. Brazhnik1,
N.I. Novikova1, D.G. Tyurina1

1JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail deniz@biotrof.ru (✉ corresponding author), ilina@biotrof.ru, filippova@biotrof.ru, laptev@biotrof.ru, kate@biotrof.ru, dubrovin@biotrof.ru, kseniya.k.a@biotrof.ru, molotkov@biotrof.ru, da@biotrof.ru, bea@biotrof.ru, novikova@biotrof.ru, tiurina@biotrof.ru;
2Saint Petersburg State Agrarian University, 2, lit A, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia;
3Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail alena_fisinina@mail.ru, vertiprakhov63@mail.ru

ORCID:
Yildirim E.A. orcid.org/0000-0002-5846-4844
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Grozina A.A. orcid.org/0000-0002-3088-0454
Kalitkina K.A. orcid.org/0000-0002-9541-6839
Vertiprakhov V.G. orcid.org/0000-0002-3240-7636
Molotkov V.V. orcid.org/0000-0002-6196-6226
Ilina L.A. orcid.org/0000-0003-2490-6942
Ahmatchin D.A. orcid.org/0000-0002-5264-1753
Filippova V.A. orcid.org/0000-0001-8789-9837
Brazhnik E.A. orcid.org/0000-0003-2178-9330
Laptev G.Y. orcid.org/0000-0002-8795-6659
Novikova N.I. orcid.org/0000-0002-9647-4184
Ponomareva E.S. orcid.org/0000-0002-4336-8273
Tyurina D.G. orcid.org/0000-0001-9001-2432

Received February 28, 2022

Mycotoxins can adversely affect the composition and function of the poultry gut microbiota, with implications for host health. The introduction of feed additives into contaminated feed is a strategy for restoring the intestinal microbiome under mycotoxicoses. This paper shows for the first time that the feed additive Zaslon 2+ effectively improves the structure and metabolic potential of the intestinal microbiome in broiler chickens with experimental T-2 mycotoxicosis. Our goal was to identify changes in the chyme microbiota and its functional annotation after 14-day exposure to T-2 toxin, artificially introduced with feed, and under the influence of the feed additive Zaslon 2+, fed alone and in combination with the proteolytic drug Axtra Pro. The experiments were carried out in the vivarium of the Federal Scientific Center ARRTPI RAS in 2021. Broiler chickens of the Smena 8 cross aged 33 days were assigned into four groups of 5 birds each. Control group I received a basal diet (BD) without T-2 toxin, group II was fed with BD added with T-2 toxin (200 µg/kg) (BD + T-2), group III — BD + T-2 + additive Zaslon 2+ (1 g/kg feed) (BIOTROF Ltd, Russia), group IV — BD + T-2 + additive Zaslon 2+ added with proteolytic preparation Axtra Pro (DuPont de Nemours, Inc., USA) (100 mg/kg feed). Zaslon 2+ contains diatomite, two Bacillus strains, and a mixture of natural essential oils (eucalyptus, thyme, garlic, and lemon). Feed intake averaged 150 g/day, i.e. the birds of the experimental groups received 30 µg T-2 toxin daily. At the end of the experiment, the caecum content was sampled from three broilers of each group. Total DNA was isolated from the samples using the Genomic DNA Purification Kit (Fermentas, Inc., Lithuania). The caecal bacterial community was assessed by NGS sequencing on the MiSeq platform (Illumina, Inc., USA) using primers for the V3-V4 region of the 16S rRNA gene. Bioinformatic data analysis was performed using QIIME2 ver. 2020.8 (https://docs.qiime2.org/2020.8/). The reconstruction and prediction of the functional content of the metagenome, gene families, and enzymes was carried out using the PICRUSt2 (v.2.3.0) software package (https://github.com/picrust/picrust2). MetaCyc base data (https://metacyc.org/) was used to analyze metabolic pathways and enzymes. NGS-sequencing revealed changes in biodiversity and composition of the gut microbiota at the level of phyla. I.e., in group II, the population of superphylum Actinobacteriota and phylum Proteobacteria increased 1.8 and 3.5 times, respectively (p ≤ 0.05) while the superphylum Desulfobacterota, on the contrary, decreased 2.2 times (p ≤ 0.05). In group IV (BD + T-2 supplemented with Zaslon 2+ and Axtra Pro), the abundance of superphylum Actinobacteriota and phylum Proteobacteria also increased compared to group I (p ≤ 0.05), while in group III (BD + T-2 supplemented with Zaslon 2+) no change occured. The members of superphylum Verrucomicrobiota completely disappeared in groups II and IV, while in group I they accounted for 14.1±0.8 %. In group III compared to group I, bacteria of the genus Lactobacillus increased (p ≤ 0.01) from 15.9±1.32 to 30.7±1.84 %. The genus Akkermansia represented by the only species A. muciniphila sharply decreased in all groups fed T-2 toxin (groups II, III, and IV) as compared to group I (p ≤ 0.001), up to a complete absence in groups II and IV. Pathogenic microorganisms which were absent in group I (Enterococcus cecorum, Campylobacter concisus, Campylobacter gracilis, Streptococcus gordonii, Flavonifractor spp.) appeared in group II. In groups III and IV, these pathogens were either absent or were present in a significantly smaller amount than in group II (p ≤ 0.05). Gut microbial community showed differences between groups (p ≤ 0.05) in 163 predicted metabolic pathways. When exposed to T-2 toxin (group II compared to group I, p ≤ 0.05), there was an increase in the predicted metabolic pathways for the degradation of aromatic compounds, including xenobiotics, and amino acids and for the synthesis of coenzymes, cofactors and formation of biofilms, cell walls, spores and protective substances in cells. The feed additive Zaslon 2+ contributed to the adjustment of metabolic pathways to the level of group I. The combined use of the feed additive Zaslon 2+ and protease (group IV) had no positive effect on the potential of metabolic pathways. Thus, feed contamination with T-2 toxin has a negative impact on the composition and predicted metabolic potential of the gut microbiome of Smena 8 cross broiler chickens. In general, the effect of the feed additive Zaslon 2+ and its complex with protease was positive though the additive without the enzyme showed greater efficiency.

Keywords: mycotoxins, T-2 toxin, broilers, gut microbiome, gene expression, poultry.

 

REFERENCES

  1. Zain M.E. Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 2011, 15(2): 129-144 CrossRef
  2. Cinar A., Onbaşı E. Mycotoxins: the hidden danger in foods. In: Mycotoxins and food safety. S. Sabuncuoğlu (ed.). United Kingdom, IntechOpen, 2019: Ch 4 CrossRef
  3. Adhikari M., Negi B., Kaushik N., Adhikari A., Al-Khedhairy A.A., Kaushik N.K., Ha Choi E. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget, 2017, 16(8): 33933-33952 CrossRef
  4. Kalantari H., Zong M.S., Chang I.-M. Assay of T-2 toxin contamination in domestic and imported agricultural products in Korea. Proc. Jpn. Assoc. Mycotoxicol., 1989, 30: 32-34 CrossRef
  5. Krska R., Malachova A., Berthiller F., van Egmond H.P. Determination of T-2 and HT-2 toxins in food and feed: An update. World Mycotoxin Journal, 2014, 7(2): 131-142 CrossRef
  6. Kononenko G.P., Burkin A.A., Zotova E.V. Veterinariya segodnya, 2020, 3(34): 213-219 CrossRef (in Russ.).
  7. Akande K.E., Abubakar M.M., Adegbola T.A., Bogoro S.E. Nutritional and health implications of mycotoxins in animal feeds: a review. Pakistan Journal of Nutrition, 2006, 5:398-403 CrossRef
  8. Devreese M., De Backer P., Croubels S. Different methods to counteract mycotoxin production and its impact on animal health. Vlaams Diergeneeskundig Tijdschrift, 2013, 82(4): 181-190 CrossRef
  9. Pande V.V., Kurkure N.V., Bhandarkar A.G. Effect of T-2 toxin on growth, performance and haematobiochemical alterations in broilers. Indian Journal of Experimental Biology,2006, 44(1): 86-88.
  10. Indresh H.C., Umakantha B. Effects of ochratoxin and T-2 toxin combination on performance, biochemical and immune status of commercial broilers. Veterinary World, 2013, 6(11): 945-949 CrossRef
  11. Stoev S.D., Diakov L., Koynarski V., Angelov A. Special pathology and diagnostics of mycoses, mycotoxicoses, parasitoses, intoxications and avitaminoses. Publishing House CD Contrast, Stara Zagora, Bulgaria, 2010: 1-239.
  12. Turner J.R. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 2009, 9: 799-809 CrossRef
  13. Jing J., Beekmann K., Ringoe E., Rietjens I., Xing F., Fuguo X. Interaction between food-borne mycotoxins and gut microbiota: a review. Food Control, 2021, 126: 107998 CrossRef
  14. Lessard M., Savard C., Deschene K., Lauzon K., Pinilla V.A., Gagnon C.A., Lapointe J., Guay F., Chorfi Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology, 2015, 80: 7-16 CrossRef
  15. Meinl W., Sczesny S., Brigelius-Flohé R., Blaut M., Glatt H. Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metabolism and Disposition, 2009, 37(6): 1179-1186 CrossRef
  16. Guerre P. Mycotoxin and gut microbiota interactions. Toxins, 2020, 12(12): 769 CrossRef
  17. Wang C., Wang X., Huang Y., Bu X., Xiao S., Qin C., Qiao F., Qin J.G., Chen L. Effects of dietary T-2 toxin on gut health and gut microbiota composition of the juvenile Chinese mitten crab (Eriocheir sinensis). Fish and Shellfish Immunology, 2020, 106: 574-582 CrossRef
  18. Chang J., Wang T., Wang P., Yin Q., Liu C., Zhu Q., Lu F., Gao T. Compound probiotics alleviating aflatoxin B1 and zearalenone toxic effects on broiler production performance and gut microbiota. Ecotoxicology and Environmental Safety, 2020, 194: 110420 CrossRef
  19. De Souza M., Baptista A.A.S., Valdiviezo M.J., Justino L., Menck-Costa M.F., Ferraz C.R., da Gloria E.M., Verri W.A., Bracarense A.P.F. Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon, 2020, 185: 203-212 CrossRef
  20. Tozaki H., Emi Y., Horisaka E., Fujita T., Yamamoto A., Muranishi S. Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon. JournalofPharmacyandPharmacology, 1997, 49(2): 164-168 CrossRef
  21. Evropeyskaya konventsiya o zashchite pozvonochnykh zhivotnykh, ispol’zuemykh dlya еksperimentov ili v inykh nauchnykh tselyakh (ETS №123). 1986 [European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS No. 123). 1986]. Available: https://base.garant.ru/4090914/. Accessed: 26.01.2022 (in Russ.).
  22. Metodika provedeniya nauchnykh i proizvodstvennykh issledovaniy po kormleniyu sel’skokhozyaystvennoy ptitsy. Molekulyarno-geneticheskie metody opredeleniya mikroflory kishechnika /Pod red. V.I. Fisinina [Methodology for conducting scientific and practical research on poultry feeding. Molecular methods for determining the intestinal microflora. V.I. Fisinin (ed.)]. Sergiev Posad, 2013 (in Russ.).
  23. Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 2020, 38: 685-688 CrossRef
  24. Tracey K.J., Wei H., Manogue K.R., Fong Y., Hesse D.G., Nguyen H.T., Kuo G.C., Beutler B., Cotran R.S., Cerami A. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. The Journal of Experimental Medicine, 1988, 167(3): 1211-1227 CrossRef
  25. Knol J., Scholtens P., Kafka C., Steenbakkers J., Groß S., Helm K., Klarczyk M., Schöpfer H., Böckler H-M., Wells J. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40(1): 36-42 CrossRef
  26. de Vrese M., Marteau P.R. Probiotics and prebiotics: effects on diarrhea. The Journal of Nutrition,2007, 137(3): 803S-811S CrossRef
  27. Lourenco J.M., Nunn S.C., Lee E.J., Dove C.R., Callaway T.R., Azain M.J. Effect of supplemental protease on growth performance and excreta microbiome of broiler chicks. Microorganisms, 2020, 8(4): 475 CrossRef
  28. Dibner J.J., Richards J.D. Antibiotic growth promoters in agriculture history and mode of action. Poultry Science, 2005, 84: 634-643 CrossRef
  29. Xiao Y., Xiang Y., Zhou W., Chen J., Li K., Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5): 1387-1393 CrossRef
  30. Macfarlane S., Macfarlane G.T. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 2003, 62(1): 67-72 CrossRef
  31. Liu L., Li Q., Yang Y., Guo A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8: 736739 CrossRef
  32. Simon P.C., Stovell P.L. Diseases of animals associated with Sphaerophorus necrophorus. Veterinary Bulletin, 1969, 39(5): 311-315.
  33. Phillips N.D., La T., Hampson D.J. Survival of intestinal spirochaete strains from chickens in the presence of disinfectants and in faeces held at different temperatures. Avian Pathology, 2003, 32(6): 639-643 CrossRef
  34. Sichert A., Corzett C.H., Schechter M.S., Unfried F., Markert S., Becher D., Fernandez-Guerra A., Liebeke M., Schweder T., Polz M.F., Hehemann J.H. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nature Microbiology, 2020, 5: 1026-1039 CrossRef
  35. Amit-Romach E., Sklan D., Uni Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Science, 2004, 83(7): 1093-1098 CrossRef
  36. Dumonceaux T.J., Hill J.E., Hemmingsen S.M., Van Kessel A.G. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Applied and Environmental Microbiology, 2006, 72(4): 2815-2823 CrossRef
  37. Ehrmann M.A., Kurzak P., Bauer J., Vogel R.F. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. Journal of Applied Microbiology, 2002, 92(5): 966-975 CrossRef
  38. Botes M., Loos B., van Reenen C.A, Dicks L.M. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Archives of Microbiology, 2008, 190(5): 573-584 CrossRef
  39. Yang C., Du Y., Ren D., Yang X., Zhao Y. Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of Turmeric polysaccharides against DSS-induced ulcerative colitis. Food Function, 2021, 12(20): 9793-9807 CrossRef
  40. Schönherr-Hellec S., Klein G., Delannoy J., Ferraris L., Friedel I., Rozé J.C., Butel M.J., Aires J. Comparative phenotypic analysis of ‘Clostridium neonatale’ and Clostridium butyricum isolates from neonates. Anaerobe, 2017, 48: 76-82 CrossRef
  41. Kong Q., He G.-Q., Jia J.-L., Zhu Q.-L., Ruan H. Oral administration of Clostridium butyricum for modulating gastrointestinal microflora in mice. Current Microbiology, 2011, 62: 512-517 CrossRef
  42. Zhu L., Lu X., Liu L., Voglmeir J., Zhong X., Yu Q. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. BMC Veterinary Research, 2020, 51(1): 34 CrossRef
  43. Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63(5): 727-735 CrossRef
  44. Jung A., Chen L.R., Suyemoto M.M., Barnes H.J., Borst L.B. A review of Enterococcus cecorum infection in poultry. Avian Diseases, 2018, 62(3): 261-271 CrossRef
  45. Kaakoush N.O., Mitchell H.M. Campylobacter concisus — a new player in intestinal disease. Frontiers in Cellular and Infection Microbiology, 2012, 2: 4 CrossRef
  46. Shinha T. Fatal bacteremia caused by Campylobacter gracilis, United States. Emerging Infectious Diseases, 2015, 21(6): 1084-1085 CrossRef
  47. Komorovsky R., Boyarchuk O., Synytska V. Streptococcus gordonii-associated infective endocarditis in a girl with Barlow’s mitral valve disease. Cardiology in the Young, 2019, 29(8): 1-2 CrossRef
  48. Berger F.K., Schwab N., Glanemann M., Bohle R.M., Gärtner B., Groesdonk H.V. Flavonifractor (Eubacterium) plautii bloodstream infection following acute cholecystitis. IDCases, 2018, 14: e00461 CrossRef
  49. Li Y., Zhang J., Wu Y., Liu G., Song L., Li Y., Yang J., You Y. High-sensitive chemiluminescent immunoassay investigation and application for the detection of T-2 toxin and major metabolite HT-2 toxin. Journal of the Science of Food and Agriculture, 2017, 97(3): 818-822 CrossRef
  50. Direct microbial conversion of biomass to advanced biofuels. M.E. Himmel (ed.). Elsevier, 2015.
  51. Reau LA.J., Suen G. The Ruminococci: key symbionts of the gut ecosystem. Journal of Microbiology, 2018, 56(3): 199-208 CrossRef
  52. Eeckhaut V., Machiels K., Perrier C., Romero C., Maes S., Flahou B., Steppe M., Haesebrouck F., Sas B., Ducatelle R., Vermeire S., Van Immerseel F. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut, 2013, 62(12): 1745-1752 CrossRef
  53. Freier T.A., Beitz D.C., Li L., Hartman P.A. Characterization of Eubacterium coprostanoligenes spp. nov., a cholesterol-reducing anaerobe. International Journal of Systematic and Evolutionary Microbiology,1994, 44(1): 137-142 CrossRef
  54. Rodrigues D.R., Briggs W., Duff A., Chasser K., Murugesan R., Pender C., Ramirez S., Valenzuela L., Bielke L. Cecal microbiome composition and metabolic function in probiotic treated broilers. PLoS One, 2020, 15(6): e0225921 CrossRef
  55. Segura-Wang M., Grabner N., Koestelbauer A., Klose V., Ghanbari M. Genome-resolved metagenomics of the chicken gut microbiome. Frontiers in Microbiology, 2021, 12: 726923 CrossRef
  56. Luengo J.M., Garcia J.L., Olivera E.R. The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Molecular Microbiology, 2001, 39(6): 1434-1442 CrossRef
  57. Nogales J., Macchi R., Franchi F., Barzaghi D., Fernández C., García J.L., Bertoni G., Díaz E. Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology, 2007, 153(2): 357-365 CrossRef
  58. Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences, 2010, 107(32): 14390-14395 CrossRef
  59. Stephanie L. Collins, Andrew D. Patterson. The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B, 2020, 10(1): 19-32 CrossRef
  60. Saheer E.G., Haroun Sh. Pathways of glutamate catabolism in Fusobacterium species. Journal of General Microbiology, 137(5): 1201-1206 CrossRef
  61. Kamran Z., Mirza M.A., Haq A.U., Mahmood S. Effect of decreasing dietary protein levels with optimal amino acids profile on the performance of broilers. Pakistan Veterinary Journal, 2004, 24: 165-168.
  62. Huyghebaert G., Ducatelle R., Van Immerseel F. An update on alternative to antimicrobial growth promoter for broilers. Veterinary Journal,2010, 187(2): 182-188 CrossRef
  63. Dibner J.J., Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 2002, 11(4): 453-463 CrossRef
  64. Dittoe D.K., Ricke S.C., Kiess A.S. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science, 2018, 5: 216 CrossRef
  65. Horswill A.R., Escalante-Semerena J.C. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry, 2001, 40(15): 4703-4713 CrossRef
  66. London R.E., Allen D.L., Gabel S.A., DeRose E.F. Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli. Journal of Bacteriology, 1999, 181(11): 3562-3570 CrossRef
  67. Stanley N.R., Lazazzera B.A. Environmental signals and regulatory pathways that influence biofilm formation. Molecular Microbiology, 2004, 52(4): 917-924 CrossRef
  68. Karatan E., Duncan T.R., Watnick P.I. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. Journal of Bacteriology, 2005, 187(21): 7434-7443 CrossRef
  69. Lee J., Sperandio V., Frantz D.E., Longgood J., Camilli A., Phillips M.A., Michael A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. Journal of Biological Chemistry, 2009, 284(15): 9899-9907 CrossRef
  70. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 2002, 15(2): 167-193 CrossRef
  71. Lee S., Bergeron H., Lau P.C., Rosazza J.P. Thiols in nitric oxide synthase-containing Nocardia spp. strain NRRL 5646. Applied and Environmental Microbiology, 2007, 73(9): 3095-3097 CrossRef
  72. Newton G.L., Buchmeier N., Fahey R.C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiology and Molecular Biology Reviews, 2008, 72(3): 471-94 CrossRef
  73. Newton G.L., Ta P., Bzymek K.P., Fahey R.C. Biochemistry of the initial steps of mycothiol biosynthesis. Journal of Biological Chemistry,2006, 281(45): 33910-33920 CrossRef
  74. Yuan L., Wang M., Zhang X., Wang Z. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzymes of broilers. PLoS One, 2017, 12(3): e0173941 CrossRef
  75. Walk C.L., Pirgozliev V., Juntunen K., Paloheimo M., Ledoux D.R. Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: enzyme screening. Poultry Science, 2018, 97(6): 2123-2138 CrossRef
  76. Mahagna M., Nir I., Larbier M., Nitsan Z. Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reprod. Nutr. Dev., 1995, 35(2): 201-212 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)