PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.664eng

UDC: 636.5:636.085.14:591.1

Acknowledgements:
The studies were carried out in accordance with the research plan for 2021-2023 of Federal Research Centre of Biological Systems and Agrotechnologies RAS (No. 0761-2019-0005).

 

FATS AND EMULSIFIERS IN FEEDING BROILER CHICKENS (review)

E.A. Sizova , K.V. Ryazantseva

Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail sizova.l78@yandex.ru (✉ corresponding author), reger94@bk.ru

ORCID:
Sizova E.A. orcid.org/0000-0002-5125-5981
Ryazantseva K.V. orcid.org/0000-0001-5134-0396

Received February 15, 2022

The increase in feed prices determines the need to optimize the rationing of high-energy ingredients of the diet, as well as various approaches to improving the efficiency of their use in the digestive process. In industrial poultry farming, fats, having a high energy value, serve as indispensable components of the diet (V.I. Fisinin et al., 2000; V.I. Fisinin et al., 2011). They provide high productivity and economic efficiency (N.C. Baião et al., 2005; M. Nayebpor et al., 2007; H. Fébel et al., 2008), play an important role in the regulation of metabolism, deposit energy, performing a protective function, serve as solvents and carriers of vitamins, hormones, as well as an obligatory component of nervous tissue (A.V. Arkhipov, 2010; M. Poorghasemi et al., 2013; R. Rodriguez-Sanchez et al., 2019). A wide variety of fats and oils and by-products of processing are available for use in diets, for example, animal fats and vegetable oils (soy, corn, sunflower, palm, hemp, mustard, etc.), sunflower fusel (a by-product of the conversion of sunflower seeds into vegetable oil), acidified soapstocks (by-products refining of vegetable oil, mainly containing free fatty acids), hydrogenated fats (A.V. Arkhipov, 2007; V.A. Manukyan et al., 2018; L.N. Skvortsova et al., 2013). The choice of fat for use in feeding farm animals and poultry is largely determined by both its cost and quality characteristics. The main factor that affects the release of energy from fat entering the body with food is its digestibility (V. Ravindran et al., 2016; R. Rodriguez-Sanchez et al., 2019; B. Jimenez-Moya et al., 2021). The digestion of fats is a complex process that requires a sufficient amount of bile acid salts and enzymes (S. Leeson et al., 2009). In addition, the correction of the diet with lipids is effective, but economically impractical. The increase in prices for animal and vegetable fats currently encourages interest in the search and use of alternative energy sources in the feed of farm animals or substances that enhance the processes of digestion and assimilation of lipids, in order to reduce the cost of production (S.A. Miroshnikov et al., 2005; O. Lyutykh, 2020). One of the approaches to increase the amount of available fats can be the use of synthetic and natural emulsifiers. Popular emulsifiers usually consist of hydrophilic and hydrophobic components that can reduce the surface tension of fat and water, reduce chylomicrons of fat, improve emulsification and increase fat absorption, make up for the deficiency of bile acid and lipase in the digestive tract of poultry (M. Rovers et al., 2014; M. Jansen et al., 2015). Natural emulsifiers include bile acids and salts, including cholic and henodeoxycholic, taurocholate, lecithin, casei, phosphatide concentrates, some of which can be produced in the animal’s body (M. Soares et al., 2002). Bile acid salts reduce the tension of the oil-water interface, activate pancreatic lipase, and also prevent the denaturation of this enzyme when it throws the surface of emulsified fat droplets (M. Boesjes et al., 2014; Y. Xu, 2016; X.K. Ge et al., 2019). Synthetic emulsifiers (lysolecitin, lysophosphatidylcholine, mono- and polyoxyethylene glycol dioleates) improve liver and bile duct function, accelerate weight gain and improve feed conversion, increase growth rates and nutrient digestibility (B. Zhang et al., 2011; M.M. Gheisar et al., 2015; S.D. Upadhaya et al., 2018). Consequently, the strategy of using emulsifiers and enzymes can be an effective tool for improving the digestion of fats both in young birds with functional immaturity of the digestive system and in adults to further reduce feed losses due to the intensification of the digestive process. The use of this approach will provide increased digestibility and digestibility of nutrients while reducing the introduction of vegetable and animal fats into the diet of broiler chickens.

Keywords: chicken broilers, feeding, diet, fats, oils, lipids, emulsifiers, digestion, microbiome.

 

REFERENCES

  1. Fisinin V.I., Egorov I.A., Okolelova T.M., Imangulov Sh.A. Kormlenie sel’skokhozyaystvennoy ptitsy [Poultry feeding]. Sergiev Posad, 2000 (in Russ.).
  2. Fisinin V.I., Egorov I.L., Draganov I.F. Kormlenieselskokhozyaystvennoyptitsy[Poultry feeding]. Moscow, 2011 (in Russ.).
  3. Egorov I.A., Imangulov Sh.A. Doklady Rossiyskoy akademii sel’skokhozyaystvennykh nauk, 2005, 5: 36-38 (in Russ.).
  4. Lebedev S.V. Еlementnyy status, obmen еnergii i produktivnost’ kur v usloviyakh razlichnoy nutrientnoy obespechennosti. Doktorskaya dissertatsiya[Elemental status, energy exchange and productivity of chickens in conditions of various nutritional levels. DSc Thesis]. Orenburg, 2009 (in Russ.).
  5. Rakhmatullin Sh.G. Obmen veshchestv i еlementnyy status tsyplyat-broylerov pri razlichnom urovne obmennoy еnergii i soderzhanii mikroеlementov v ratsione. Avtoreferat kandidatskoy dissertatsii[Metabolism and elemental status of broiler chickens at different levels of metabolic energy and trace elements in the diet. PhD Thesis]. Orenburg, 2009 (in Russ.).
  6. Kozina E.A. Normirovannoe kormlenie zhivotnykh i ptitsy. Chast’ II. Kormlenie monogastrichnykh zhivotnykh, ptitsy, pushnykh zverey, sobak i koshek: uchebnoe posobie [Normalized feeding of animals and poultry. Part II. Feeding of monogastric animals, birds, fur-bearing animals, dogs and cats: textbook]. Krasnoyarsk, 2012 (in Russ.).
  7. Ryazantseva K.V., Nechitaylo K.S., Sizova E.A. Zhivotnovodstvo i kormoproizvodstvo, 2021, 104(1): 119-137 (in Russ.).
  8. Ravindran V., Tancharoenrat P., Zaefarian F., Ravindran G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Animal Feed Science and Technology, 2016, 213: 1-21 CrossRef
  9. Fisinin V.I., Egorov I.A., Lenkova T.N., Pan’kov P.N., Rozanov B.L., Egorova T.V., Toporkov N.V., Osmanyan A.K., Shtele A.L., Galkin V.A., Babayants V.V., Kuznetsov A.S. Ispol’zovanie sukhikh rastitel’nykh (pal’movykh) zhirov v kormlenii vysokoproduktivnoy ptitsy [The use of dry vegetable (palm) fats in feeding highly productive poultry]. Sergiev Posad, 2008 (in Russ.).
  10. Lebedev S.V., Levakhin G.I, Gubaydullina I.Z., Markova I.V., Sheyda E.V. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2018, 74(6): 205-208 (in Russ.).
  11. Lebedev S.V., Sheyda E.V., Vershinina I.A., Gubaydullina I.Z., Miroshnikov I.S., Ryazanov V.A., Makaeva A.M., Markova I.V., Ushakov A.S. Zhivotnovodstvo i kormoproizvodstvo, 2019, 102(4): 198-207 CrossRef (in Russ.).
  12. Osepchuk D.V., Zhuravlev A.V. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2013, 43: 241-243 (in Russ.).
  13. Viñado A., Castillejos L., Rodriguez-Sanchez R., Barroeta A.C. Crude soybean lecithin as alternative energy source for broiler chicken diets. Poultry Science, 2019, 98(11): 5601-5612 CrossRef
  14. Kodentsova V.M., Kochetkova A.A., Smirnova E.A., Sarkisyan V.A., Bessonov V.V. Voprosy pitaniya, 2014, 83(6): 4-17 CrossRef (in Russ.).
  15. Mohammed H.A., Horniakova E. Effect of using saturated and unsaturated fat with mixing them in broiler diet on blood parameter. Journal of Microbiology, Biotechnology and Food Sciences,2011, 1(3): 309-322.
  16. Tabeidian S.A., Ghafoori M., Bahrami Y., Chekani-Azar S., Toghyani M. Effect of different levels of dietary fat on broiler performance and production cost with emphasis on calcium and phosphorus absorption. Global Veterinaria, 2010, 5: 54-60.
  17. Siyal F., Babazadeh D., Wang C., Arain M.A., Saeed M., Ayasan T., Zhang L., Wang T. Emulsifiers in the poultry industry. World’s Poultry Science Journal, 2017, 73(3): 611-620 CrossRef
  18. Crespo N., Esteve-Garcia E. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poultry Science, 2001, 80(1): 71-78 CrossRef
  19. Barzegar S., Wu S.B., Choct M., Swick R.A. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 2020, 99(1): 487-498 CrossRef
  20. Likhobabina L.N. Materialy III nauchno-prakticheskoy konferentsii «Perspektivnye napravleniya v proizvodstve i ispol’zovanii kombikormov i balansiruyushchikh dobavok» [Proc. III Conf. «Promising ways to produce and use of compound feeds and balancing additives»]. Dubrovitsy, 2003: 65-66 (in Russ.).
  21. Carré B., Lessire M., Juin H. Prediction of the net energy value of broiler diets. Animal, 2014, 8(9): 1395-1401 CrossRef
  22. Cortinas L., Villaverde C., Galobart J., Baucells M.D., Codony R., Barroeta A.C. Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poultry Science, 2004, 83(7): 1155-1164 CrossRef
  23. Arkhipov A.V. Lipidnoe pitanie, produktivnost’ ptitsy i kachestvo produktov ptitsevodstva [Lipid nutrition, poultry productivity and quality of poultry products]. Moscow, 2007 (in Russ.).
  24. Allahyari-Bake S., Jahanian R. Effects of dietary fat source and supplemental lysophosphatidylcholine on performance, immune responses, and ileal nutrient digestibility in broilers fed corn/soybean meal-or corn/wheat/soybean meal-based diets. Poultry Science, 2017, 96(5): 1149-1158 CrossRef
  25. Manukyan V.A., Baykovskaya E.Yu., Sennikov V.P. Ptitsevodstvo, 2018, 5: 12-15 (in Russ.).
  26. Chwen L.T., Foo H.L., Thanh N.T., Choe D.W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australasian Journal of Animal Sciences, 2013, 26(5): 700-704 CrossRef
  27. Nagadi S.A., de Oliveira A.A. Dietary distilled fatty acids and antioxidants improve nutrient use and performance of Japanese male quails. Animal Science Papers and Reports, 2019, 37(1): 65-74 CrossRef
  28. Ruban N.A., Tsap S.V., Orishchuk O.S. Nauchno-tekhnicheskiy byulleten’ Instituta zhivotnovodstva Natsional’noy akademii agrarnykh nauk Ukrainy, 2016, 115: 189-194 (in Russ.).
  29. Skvortsova L.N., Svistunov A.A. Aktual’nye problemy intensivnogo razvitiya zhivotnovodstva, 2013, 16(1): 68-74 (in Russ.).
  30. Azman M.A., Konar V., Seven P.T. Effects of different dietary fat sources on growth performances and carcass fatty acid composition of broiler chickens. Revue de Médecine Vétérinaire, 2004, 155(5): 278-286.
  31. Baião N.C., Lara L.J. Oil and fat in broiler nutrition. Brazilian Journal of Poultry Science, 2005, 7(3): 129-141 CrossRef
  32. Nayebpor M., Hashemi A., Farhomand P. Influence of soybean oil on growth performance, carcass properties, abdominal fat deposition and humoral immune response in male broiler chickens. Journal of Animal and Veterinary Advances, 2007, 6(11): 1317-1322.
  33. Fébel H., Mezes M., Palfy T., Herman A., Gundel J., Lugasi A., Blazovics A. Effect of dietary fatty acid pattern on growth, body fat composition and antioxidant parameters in broilers. Journal of Animal Physiology and Animal Nutrition, 2008, 92(3): 369-376 CrossRef
  34. Arkhipov A.V. Vestnik FGOU VPO Bryanskaya GSKhA, 2010, 1: 16-24 (in Russ.).
  35. Poorghasemi M., Seidavi A., Qotbi A.A., Laudadio V., Tufarelli V. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australasian Journal of Animal Sciences, 2013, 26(5): 705-710 CrossRef
  36. Okur N. The effects of soy oil, poultry fat and tallow with fixed energy: protein ratio on broiler performance. Archives Animal Breeding, 2020, 63(1): 91-101 CrossRef
  37. Rodriguez-Sanchez R., Tres A., Sala R., Guardiola F., Barroeta A.C. Evolution of lipid classes and fatty acid digestibility along the gastrointestinal tract of broiler chickens fed different fat sources at different ages. Poultry Science, 2019, 98(3): 1341-1353 CrossRef
  38. Jimenez-Moya B., Barroeta A.C., Tres A., Soler M.D., Sala R. Soybean oil replacement by palm fatty acid distillate in broiler chicken diets: fat digestibility and lipid-class content along the intestinal tract. Animals, 2021, 11(4): 1035 CrossRef
  39. Wealleans A.L., Buyse J., Scholey D., Van Campenhout L., Burton E., Di Benedetto M., Pritchard S., Nuyens F., Jansen M. Lysolecithin, but not lecithin, improves nutrient digestibility and growth rates in young broilers. British Poultry Science, 2020, 61(4): 414-423 CrossRef
  40. Okolelova T.M., Kulakov A.V., Kulakov P.A. Kachestvennoe syr’e i biologicheski aktivnye dobavki — zalog uspekha v ptitsevodstve [High-quality raw materials and bioactive additives are the key to success in poultry farming]. Sergiev Posad, 2007 (in Russ.).
  41. Vlasov A.B. Politematicheskiy setevoy еlektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta,2012, 77: 710-719 (in Russ.).
  42. Kononenko S.I. Zootekhnicheskaya nauka Belarusi, 2013, 48(1): 299-306 (in Russ.).
  43. Kuznetsova A. Еffektivnoe zhivotnovodstvo, 2019, 4(152): 28-29 (in Russ.).
  44. San Tan H., Zulkifli I., Farjam A.S., Goh Y.M., Croes E., Partha S.K., Tee A.K. Effect of exogenous emulsifier on growth performance, fat digestibility, apparent metabolisable energy in broiler chickens. Journal of Biochemistry, Microbiology and Biotechnology, 2016, 4(1): 7-10 CrossRef
  45. Lai W., Huang W., Dong B., Cao A., Zhang W., Li J., Wu H., Zhang L. Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poultry Science, 2018, 97(1): 196-202 CrossRef
  46. Egorov I.A., Toporkov N.V. Kombikorma, 2005, 1: 60-62 (in Russ.).
  47. Fisinin V.I., Egorov I.A., Egorova T.V., Okolelova T.M. Rukovodstvo po optimizatsii retseptov kombikormov dlya sel’skokhozyaystvennoy ptitsy [Guidelines for optimizing feed recipes for poultry]. Sergiev Posad, 2012 (in Russ.).
  48. Egorov I.A., Egorova T.V., Popova M., Savchuk S. Kombikorma, 2014, 12: 64-66 (in Russ.).
  49. Mossab A., Hallouis J.M., Lessire M. Utilization of soybean oil and tallow in young turkeys compared with young chickens. Poultry Science, 2000, 79(9): 1326-1331 CrossRef
  50. Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poultry Science, 2014, 93(2): 371-379 CrossRef
  51. Sampels S., Zajíc T., Mráz J. Increasing the omega-3 content of traditional meat products by the addition of an underutilised by-product from fish processing. Czech Journal of Food Sciences, 2015, 33: 431-440 CrossRef
  52. Komov V.P., Shvedova V.N. Biokhimiya [Biochemistry]. Moscow, 2004 (in Russ.).
  53. Egorov I.A., Shtele A.L., Toporkov N.V. Vestnik RASKhN, 2007, 3: 31-34 (in Russ.).
  54. Svistunov A.A. Ispol’zovanie prebioticheskikh i zhirovykh dobavok v kormlenii tsyplyat-broylerov. Avtoreferat kandidatskoy dissertatsii[The use of probiotic and fat supplements in the feeding of broiler chickens. PhD Thesis]. Krasnodar, 2014 (in Russ.).
  55. Mal’tsev A.B., Yadrishchenskaya O.A., Selina T.V. Ptitsa i ptitseprodukty, 2016, 1: 41-43 (in Russ.).
  56. Aydin R., Karaman M., Toprak H.H.C., Ozugur A.K., Aydin D., Cicek T. The effect of long-term feeding of conjugated linoleic acid on fertility in Japanese quail. South African Journal of Animal Science, 2006, 36(2): 99-104 CrossRef
  57. Leone V.A., Stransky D.L., Aydin R., Cook M.E. Evidence for conjugated linoleic ac-id-induced embryonic mortality that is independent of egg storage conditions and changes in egg relative fatty acids. Poultry Science, 2009, 88(9): 1858-1868 CrossRef
  58. Cherian G. Nutrition and metabolism in poultry: role of lipids in early diet. Journal of Animal Science and Biotechnology, 2015, 6(1): 28 CrossRef
  59. National Research Council. Nutrient requirements of poultry: ninth revised edition. Washington, DC, The National Academies Press, 1994 CrossRef
  60. Skřivan M., Marounek M., Englmaierová M., Čermák L., Vlčková J., Skřivanová E. Effect of dietary fat type on intestinal digestibility of fatty acids, fatty acid profiles of breast meat and abdominal fat, and mRNA expression of lipid-related genes in broiler chickens. PLoS ONE, 2018, 13(4): e0196035 CrossRef
  61. Elnesr S.S., Alagawany M., Elwan H.A., Fathi M.A., Farag M.R. Effect of sodium butyrate on intestinal health of poultry — a review. Annals of Animal Science, 2020, 20(1): 29-41 CrossRef
  62. Sacranie A., Svihus B., Denstadli V., Moen B., Iji P.A., Choct M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Science,2012, 91(3): 693-700 CrossRef
  63. Wang B.J., Cui Z.J. How does cholecystokinin stimulate exocrine pancreatic secretion? From birds, rodents, to humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(2): R666-R678 CrossRef
  64. Monte M.J., Marin J.J., Antelo A., Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 2009, 15(7): 804-816 CrossRef
  65. Marin J.J., Macias R.I., Briz O., Banales J.M., Monte M.J. Bile acids in physiology, pathology and pharmacology. Current Drug Metabolism, 2016, 17(1): 4-29 CrossRef
  66. Alzawqari M., Moghaddam H., Kermanshahi H., Raji A.R. The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. Journal of Applied Animal Research, 2011, 39(2): 169-174 CrossRef
  67. Gabriel I., Lessiire M., Mallet S., Guillot J. Microflora of the digestive tract: critical factors and consequences for poultry. World’s Poultry Science Journal, 2006, 62(3): 499-511 CrossRef
  68. Ravindran V. Feed enzymes: the science, the practice and the metabolic realities. Journal of Applied Poultry Research, 2013, 22(3): 636-644 CrossRef
  69. Leeson S., Summers J.D. Commercial poultry nutrition. Nottingham University Press, 2009.
  70. Zhu X.Y., Zhong T., Pandya Y., Joerger R.D. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124-137 CrossRef
  71. Danzeisen J.L. Kim H.B., Isaacson R.E., Tu Z.J., Johnson T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PloS ONE, 2011, 6(11): e27949 CrossRef
  72. Pan D., Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 2014, 5(1): 108-119 CrossRef
  73. Hegde N.V., Kariyawasam S., DebRoy C. Comparison of antimicrobial resistant genes in chicken gut microbiome grown on organic and conventional diet. Veterinary and Animal Science, 2016, 1: 9-14 CrossRef
  74. Mancabelli L. Ferrario C., Milani C., Mangifesta M., Turroni F., Duranti S., Lugli G.A., Viappiani A., Ossiprandi M.C., van Sinderen D., Ventura M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 2016, 18(12): 4727-4738 CrossRef
  75. Kumar S., Chen C., Indugu N., Werlang G.O., Singh M., Kim W.K., Thippareddi H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PloS ONE, 2018, 13(2): e0192450 CrossRef
  76. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351): 327-336 CrossRef
  77. Gerritsen J., Smidt H., Rijkers G.T., de Vos W.M. Intestinal microbiota in human health and disease: the impact of probiotics. Genes and Nutrition, 2011, 6(3): 209-240 CrossRef
  78. Fisinin V.I., Laptev G.Yu., Egorov I.A., Grozina A.A., Lenkova T.N., Manukyan V.A., Nikonov I.N., Il’ina L.A., Novikova N.I., Yyldyrym E.A., Fillipova V.A., Dubrovin A.V., Gorfunkel’ A., Burkova O.Yu., Egorova T.V., Egorova T.A., Kosilov A.N., Paznikova G.A., Ufimtseva N.F. Sovremennye predstavleniya o mikroflore kishechnika ptitsy pri razlichnykh ratsionakh pitaniya: molekulyarno-geneticheskie podkhody [Modern ideas about the intestinal microflora of poultry in various diets: molecular genetic approaches]. Sergiev Posad, 2017 (in Russ.).
  79. Apajalahti J., Kettunen A., Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Science Journal, 2004, 60(2): 223-232 CrossRef
  80. Wielen P.W.J.J., Keuzenkamp D.A., Lipman L.J.A., Knapen F., Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecology, 2002, 44(3): 286-293 CrossRef
  81. Rehman H.U., Vahjen W., Awad W.A., Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 2007, 61(5): 319-335 CrossRef
  82. Stanley D., Hughes R.J., Moore R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Applied Microbiology and Biotechnology, 2014, 98(10): 4301-4310 CrossRef
  83. Brisbin J.T., Gong J., Sharif S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Animal Health Research Reviews, 2008, 9(1): 101-110 CrossRef
  84. Yegani M., Korver D.R. Factors affecting intestinal health in poultry. Poultry Science, 2008, 87(10): 2052-2063 CrossRef
  85. Jankowski J., Juskiewicz J., Gulewicz K., Lecewicz A., Slominski B.A., Zdunczyk Z. The effect of diets containing soybean meal, soybean protein concentrate, and soybean protein isolate of different oligosaccharide content on growth performance and gut function of young turkeys. Poultry Science, 2009, 88(10): 2132-2140 CrossRef
  86. Oakley B.B., Kogut M.H. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Frontiers in Veterinary Science, 2016, 3: 11 CrossRef
  87. Yan W., Sun C., Yuan J., Yang N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Scientific Reports, 2017, 7: 45308 CrossRef
  88. Fujimura K.E., Slusher N.A., Cabana M.D., Lynch S.V. Role of the gut microbiota in defining human health. Expert Review of Anti-infective Therapy, 2010, 8(4): 435-454 CrossRef
  89. Hussain M., Bonilla-Rosso G., Chung C.K., Bäriswyl L., Rodriguez M.P., Kim B.S., Engel P., Noti M. High dietary fat intake induces a microbiota signature that promotes food allergy. Journal of Allergy and Clinical Immunology, 2019, 144(1): 157-170 CrossRef
  90. Wu G., Niu M., Tang W., Hu J., Wei G., He Z., Chen Y., Jiang Y., Chen P. L-Fucose ameliorates high-fat diet-induced obesity and hepatic steatosis in mice. Journal of Translational Medicine, 2018, 16: 344 CrossRef
  91. Duan M., Sun X., Ma N., Liu Y., Luo T., Song S., Ai C. Polysaccharides from Laminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota. International Journal of Biological Macromolecules, 2019, 121: 996-1004 CrossRef
  92. Fisinin V.I., Il’ina L.A., Yyldyrym E.A., Nikonov I.N., Filippova V.A., Laptev G.Yu., Novikova N.I., Grozina A.A., Lenkova T.N., Manukyan V.A., Egorov I.A. Mikrobiologiya,2016, 85(4): 472-480 CrossRef (in Russ.).
  93. Feng W., Wang H., Zhang P., Gao C., Tao J., Ge Z., Zhu D., Bi Y. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica et Biophysica Acta — General Subjects, 2017, 1861(7): 1801-1812 CrossRef
  94. Wang C.-C., Yen J.-H., Cheng Y.-C., Lin C.-Y., Hsieh C.-T., Gau R.-J., Chiou S.-J., Chang H.-Y. Polygala tenuifolia extract inhibits lipid accumulation in 3T3-L1 adipocytes and high-fat diet-induced obese mouse model and affects hepatic transcriptome and gut microbiota profiles. Food and Nutrition Research,2017, 61: 1379861 CrossRef
  95. Gómez-Zorita S., Aguirre L., Milton-Laskibar I., Fernández-Quintela A., Trepiana J., Kajarabille N., Mosqueda-Solís A., González M., Portillo M.P. Relationship between changes in microbiota and liver steatosis induced by high-fat feeding-a. Review of rodent models. Nutrients, 2019, 11(9): 2156 CrossRef
  96. Porras D., Nistal E., Martínez-Flórez S., Pisonero-Vaquero S., Olcoz J.L., Jover R., González-Gallego J., García-Mediavilla M.V., Sánchez-Campos S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radical Biology and Medicine, 2017, 102: 188-202 CrossRef
  97. Murphy E.A., Velazquez K.T., Herbert K.M. Influence of high-fat-diet on gut microbiota: a driving force for chronic disease risk. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(5): 515-520 CrossRef
  98. Diaz Carrasco J.M., Casanova N.A., Fernández Miyakawa M.E. Microbiota, gut health and chicken productivity: what is the connection. Microorganisms, 2019, 7(10): 374 CrossRef
  99. Miroshnikov S.A., Grechushkin A.I., Mioshnikov A.M., Lebedev S.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2005, 2(40): 47-49 (in Russ.).
  100. Lyutykh O. Еffektivnoe zhivotnovodstvo, 2020, 5(162): 72-79 (in Russ.).
  101. Balevi T., Coskun B. Aktümsek A. Use of oil industry by-products in broiler diets. Revue De Medecine Veterinarie, 2001, 152: 805-810.
  102. Borsatti L., Vieira S.L., Stefanello C., Kindlein L., Oviedo-Rondón E.O., Angel C.R. Apparent metabolizable energy of by-products from the soybean oil industry for broilers: acidulated soapstock, glycerin, lecithin, and their mixture. Poultry Science, 2018, 97(1): 124-130 CrossRef
  103. Alvarenga R.R., Lima E.M.C., Zangeronimo M.G., Rodrigues P.B., Bernardino V.M.P. Use of glycerine in poultry diets. World's Poultry Science Journal, 2012, 68(4): 637-644 CrossRef
  104. Cerrate S., Cerrate S., Yan F., Wang Z., Coto C., Sacakli P., Waldroup P.W. Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. International Journal of Poultry Science, 2006, 5(11): 1001-1007 CrossRef
  105. Dozier W.A., Kerr B.J., Corzo A., Kidd M.T., Weber T.E., Bregendahl K. Apparent metabolizable energy of glycerin for broiler chickens. Poultry Science, 2008, 87(2): 317-22 CrossRef
  106. Hu X.Q., Wang W.B., Liu L., Wang C., Feng W., Luo Q.P., Han R., Wang X.D. Effects of fat type and emulsifier in feed on growth performance, slaughter traits, and lipid metabolism of Cherry Valley ducks. Poultry Science, 2019, 98(11): 5759-5766 CrossRef
  107. An J.S., Yun W., Lee J.H., Oh H.J., Kim T.H., Cho E.A., Kim G.M., Kim K.H., Lee S.D., Cho J.H. Effects of exogenous emulsifier supplementation on growth performance, energy digestibility, and meat quality in broilers. Journal of Animal Science and Technology, 2020, 62(1): 43-51 CrossRef
  108. Rovers M., Excentials O. Saving energy and feed cost with nutritional emulsifier. International Poultry Production, 2014, 22(4): 7-8.
  109. Jansen M., Nuyens F., Buyse J., Leleu S., Van Campenhout L. Interaction between fat type and lysolecithin supplementation in broiler feeds. Poultry Science, 2015, 94(10): 2506-2515 CrossRef
  110. Boontiam W., Jung B., Kim Y.Y. Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poultry Science, 2017, 96(3): 593-601 CrossRef
  111. Zhao P.Y., Kim I.H. Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 2017, 96(5): 1341-1347 CrossRef
  112. Bontempo V., Comi M., Jiang X.R., Rebucci R., Caprarulo V., Giromini C., Gottardo D., Fusi E., Stella S., Tirloni E., Cattaneo D., Baldi A. Evaluation of a synthetic emulsifier product supplementation on broiler chicks. Animal Feed Science and Technology, 2018, 240: 157-164 CrossRef
  113. Hasenhuettl G.L. Synthesis and commercial preparation of food emulsifiers. In: Food emulsifiers and their applications. G. Hasenhuettl, R. Hartel (eds.). Springer, Cham, 2019: 11-39 CrossRef
  114. Podobed L.I. Nashe sel’skoe khozyaystvo, 2018, 20: 29-33 (in Russ.).
  115. Okolelova T., Mansurov N., Safonov A. Kombikorma, 2015, 10: 71-72 (in Russ.).
  116. Tancharoenrat P., Ravindran V., Zaefarian F., Ravindran G. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. AnimalFeed Science and Technology, 2013, 186(3-4): 186-192 CrossRef
  117. Huang J., Yang D., Wang T. Effects of replacing soy-oil with soy-lecithin on growth performance, nutrient utilisation and serum parameters of broilers fed corn-based diets. Asian-Australian Journal of Animal Sciences, 2007, 20: 1880-1886 CrossRef
  118. Guerreiro Neto A.C., Pezzato A.C., Sartori J.R., Mori C., Cruz V., Faschina V., Pinheiro D.F., Madeira L.A., Goncalvez J.C. Emulsifier in broiler diets containing different fat sources. Brazilian Journal of Poultry Science, 2011, 13(2): 119-125 CrossRef
  119. Zhang B., Haitao L., Zhao D., Guo Y., Barri A. Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Animal Feed Science and Technology, 2011, 163(2-4): 177-184 CrossRef
  120. Gheisar M.M., Hosseindoust A., Kim H.B., Kim I.H. Effects of lysolecithin and sodium stearoyl-2-lactylate on growth performance and nutrient digestibility in broilers. Korean Journal of Poultry Science, 2015, 42(2): 133-137 CrossRef
  121. Upadhaya S.D., Lee J.S., Jung K.J., Kim I.H. Influence of emulsifier blends having different hydrophilic-lipophilic balance value on growth performance, nutrient digestibility, serum lipid profiles, and meat quality of broilers. Poultry Science, 2018, 97(1): 255-261 CrossRef
  122. Soares M., Lopez-Bote C.J. Effect of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 2002, 95: 169-177 CrossRef
  123. Boesjes M., Brufau G. Metabolic effects of bile acids in the gut in health and disease. Current Medicinal Chemistry, 2014, 21(24): 2822-2829 CrossRef
  124. Xu Y. Recent progress on bile acid receptor modulators for treatment of metabolic diseases. Journal of Medicinal Chemistry, 2016, 59(14): 6553-6579 CrossRef
  125. Ge X.K., Wang A.A., Ying Z.X., Zhang L.G., Su W.P., Cheng K., Feng C.C., Zhou Y.M., Zhang L.L., Wang T. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poultry Science, 2019, 98(2): 887-895 CrossRef
  126. Abousaad S., Lassiter K., Piekarski A., Chary P., Striplin K., Christensen K., Bielke L.R., Hargis B.M., Dridi S., Bottje W.G. Effects of In Ovo feeding of dextrin-iodinated casein in broilers: I. Hatch weights and early growth performance. Poultry Science, 2017, 96(5): 1473-1477 CrossRef
  127. Rychen G., Aquilina G., Azimonti G., Bampidis V., Bastos M.L., Bories G., Chesson A., Cocconcelli P.S., Flachowsky G., Kolar B., Kouba M., López-Alonso M., López Puente S., Mantovani A., Mayo B., Ramos F., Saarela M., Villa R.E., Wallace R.J., Wester P., Lundebye A.K., Nebbia C., Renshaw D., Innocenti M.L., Gropp J. Modification of the terms of authorisation of lecithins as a feed additive for all animal species. EFSA Journal, 2018, 16(6): e05334 CrossRef
  128. Bavaresco C., Silva S.N., Dias R.C., Lopes D.C., Xavier E.G., Roll V.F. Performance, metabolic efficiency and egg quality in Japanese quails fed with acidulated soybean soapstock and lecithin for a prolonged period. Anais da Academia Brasileira de Ciências, 2020, 92(suppl. 1): e20180620 CrossRef
  129. Okolelova T.M., Engashev S.V. Veterinariya i kormlenie, 2020, 5: 29-33 CrossRef (in Russ.).
  130. Serpunja S., Kim I.H. The effect of sodium stearoyl-2-lactylate (80%) and tween 20 (20%) supplementation in low-energy density diets on growth performance, nutrient digestibility, meat quality, relative organ weight, serum lipid profiles, and excreta microbiota in broilers. Poultry Science, 2018, 98(1): 269-275 CrossRef
  131. Zampiga M., Meluzzi A., Sirri F. Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Italian Journal of Animal Science, 2016, 15(3): 521-528 CrossRef
  132. Roy A., Haldar S., Mondal S., Ghosh T.K. Effects of supplemental exogenous emulsifier on performance, nutrient metabolism, and serum lipid profile in broiler chickens. Veterinary Medicine International, 2010: 262604 CrossRef
  133. Upadhaya S.D., Park J.W., Park J.H., Kim I.H. Efficacy of 1,3-diacylglycerol as a fat emulsifier in low-density diet for broilers. Poultry Science, 2017, 96(6): 1672-1678 CrossRef
  134. Siyal F.A., Abd El-Hack M.E., Alagawany M., Wang C., Wan X., He J.T., Wang M.F., Zhang L.L., Zhong X., Wang T., Kuldeep D. Effect of soy lecithin on growth performance, nutrient digestibility and hepatic antioxidant parameters of broiler chickens. International Journal of Pharmacology, 2017, 13(4): 396-402 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)