PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.762eng

UDC: 579.6:577.2

Acknowledgements:
Supported financially from the Russian Foundation for Basic Research, grant No. 19-316-90041 “Whole-genome sequencing of bacilli strains isolated from the cicatricial contents of various ruminants”.

 

BIOINFORMATIC ANALYSIS OF THE Bacillus velezensis KR-2 GENOME TO REVEAL BIOTECHNOLOGICALLY IMPORTANT PROPERTIES

G.Y. Laptev1, E.A. Yildirim1, T.P. Dunyashev1, L.A. Ilyina1,
D.G. Tyurina2,
V.A. Filippova1, E.A. Brazhnik2, N.V. Tarlavin2,
E.S. Ponomareva2, A.V. Dubrovin2, K.A. Kalitkina1, N.I. Novikova2,
A.V. Platonov3

1Saint Petersburg State Agrarian University,2, lit A, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail laptev@biotrof.ru (✉ corresponding author), timur@biotrof.ru, deniz@biotrof.ru, ilina@biotrof.ru, kseniya.k.a@biotrof.ru;
2JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail bea@biotrof.ru, dumova@biotrof.ru, novikova@biotrof.ru, tiurina@biotrof.ru, tarlav1995@biotrof.ru, dubrovin@biotrof.ru;
3Vologda Scientific Center RAS, 56a, ul. Gorkogo, Vologda, 160014 Russia, e-mail platonov70@yandex.ru

ORCID:
Laptev G.Y. orcid.org/0000-0002-8795-6659
Tarlavin N.V. orcid.org/0000-0002-6474-9171
Yildirim E.A. orcid.org/0000-0002-5846-4844
Ponomareva E.S. orcid.org/0000-0002-4336-8273
Dunyashev T.P. orcid.org/0000-0002-3918-0948
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Ilyina L.A. orcid.org/0000-0003-2490-6942
Kalitkina K.A. orcid.org/0000-0002-9541-6839
Tyurina D.G. orcid.org/0000-0001-9001-2432
Novikova N.I. orcid.org/0000-0002-9647-4184
Filippova V.A. orcid.org/0000-0001-8789-9837
Platonov A.V. orcid.org/0000-0002-1110-7116
Brazhnik E.A. orcid.org/0000-0003-2178-9330

Received May 30, 2022

Members of the genus Bacillus are actively used to create biological preparations for agriculture due to their ability to produce a wide range of biologically active molecules with antimicrobial activity, stimulating plant growth and restoring the balance of microorganisms in the digestive system of animals. This paper presents for the first time research data on the identification of a unique pathway for intracellular synthesis of the osmoprotectant glycine betaine encoded by the BetA, BetB, BetT, and BetC genes, which has not previously been found in the genus Bacillus. The peculiarity of the B. velezensis KR-2 genome associated with the synthesis of the siderophore myxochelin A, which we have identified, is probably also unique among other strains of B. velezensis, since it has not been previously described. The aim of the study was whole genome sequencing (WGS) and bioinformatic annotation of the Bacillus velezensis KR-2 genome to identify genetic determinants capable of encoding biosynthesis of various bioactive substances for agriculture. The B. velezensis KR-2 strain isolated from the rumen of a dairy cow (the collection of OOO BIOTROF+) was examined. Its antimicrobial activity was investigated using the differed antagonism assay. DNA was isolated according to standard procedures with the Genomic DNA Purification Kit (Thermo Fisher Scientific Inc., USA). A DNA library for WGS was prepared using the Nextera XT kit (Illumina, Inc., USA). Nucleotide sequences were determined using a MiSeq instrument (Illumina, Inc., USA). Paired-end reads filtered by length not less than 50 to 150 bp were assembled de novo using the SPAdes-3.11.1 genomic assembler with appropriate keys. Comparative analysis of the B. velezensis KR-2 genome with other microorganisms was performed using the NCBI databases (https://www.ncbi.nlm.nih.gov/). For phylogenetic analysis, the 16S rRNA gene sequence was transferred to the Nucleotide BLAST web service (https://blast.ncbi.nlm.nih.gov). PROKKA 1.12 (https://bioweb.pasteur.fr/packages/pack@prokka@1.12) was used to convert contig sequences into an amino acid sequences. Functional annotation of the genome was performed using the RAST 2.0 web service (https://rast.nmpdr.org). The KEGG Pathway database (http://www.genome.jp/kegg/) was used to evaluate the pool of genes associated with biotechnologically valuable properties and build metabolic maps. WGS resulted in 16 contigs with a total length of 3936398 bp, containing 46.6 % of GC; the N50 and N75 conting size was 2109194 and N75 844068 bp, respectively. The chromosome contained 3854 coding sequences (CDS) associated with the synthesis of polypeptides. Among the 464 identified metabolic subsystems, the subsystems of amino acids and their derivatives and carbohydrates were the most numerous, 431 and 416, respectively. The B. velezensis KR-2 strain has a whole range of potential properties, including the production of antimicrobial peptides, fatty acids, vitamins, siderophores, auxins, the ability to adhere, to resist toxic compounds and stress factors, to stimulate plant growth and phosphate metabolism, the motility and chemotaxis. In particular, the B. velezensis КR-2 genome contains genes (BacA, BacB, BacG, BacF, BacD) involved in the production of the dipeptide bacilysine, a non-ribosomal bacteriocin. This is consistent with the phenomenon of antagonism against Staphylococcus aureus, Escherichia coli, Fusarium oxysporum, and Clostridium butyricum. In the B. velezensis КR-2 genome, we have found a unique pathway for intracellular synthesis of the osmoprotectant glycine betaine (the BetA, BetB, BetT, BetC genes) not previously detected in the genus Bacillus. B. velezensis КR-2 is a putative producer of auxins, such as indole-3 ethanol (IAR, TO), indole-3-acetaldehyde (IAD, AAD, AO) and indole-3-acetonitrile (N3). Several gene clusters associated with siderophore synthesis (DhbA, DhbB, DhbC, FeuA, FeuB, FeuC, FeuD) were also identified in the genome of B. velezensis KP-2. Our findings indicate that B. velezensis KR-2 is a bacterial resource for agriculture. The unique biosynthesis pathway for glycine betaine (BetA, BetB, BetT, and BetC) that we have discovered are important for the B. velezensis KP-2 adaptation to high-osmolar stress under fluctuations in water content, for example, in dried silage and upper layers of soil.

Keywords: whole genome sequencing, Bacillus velezensis, bioactive substances, antimicrobial activity, bacilysine, glycine betaine, probiotics, PGPR, starter cultures.

 

REFERENCES

  1. Schallmey M., Singh A., Ward O.P. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 2004, 50(1): 1-17 CrossRef
  2. Lara E., Carvalho Basso F., Assis F., Souza F., Berchielli T., Reis R. Changes in the nutritive value and aerobic stability of corn silages inoculated with Bacillus subtilis alone or combined with Lactobacillus plantarum. Animal Production Science, 2015, 56(11): 1867-1874 CrossRef
  3. Guo Q., Li S., Lu X., Zhang X., Wang P., Ma P. Complete genome sequence of Bacillus subtilis BAB-1, a biocontrol agent for suppression of tomato gray mold. Genome Announcements, 2014, 2(4): e00744-14 CrossRef
  4. Piewngam P., Zheng Y., Nguyen T.H., Seth W. Dickey, Joo H.-S., Villaruz A.E., Glose K.A., Fisher E.L., Hunt R.L., Li B., Chiou J., Pharkjaksu S., Khongthong S., Cheung G.Y.C., Kiratisin P., Otto M. Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 2018, 562(7728): 532-537 CrossRef
  5. Bartolini M., Cogliati S., Vileta D., Bauman C., Ramirez W., Grau R. The stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of Bacillus subtilis. Applied and Environmental Microbiology, 2019, 85(9): e00178-19 CrossRef
  6. Swartzendruber J.A., Incrocci R.W., Wolf S.A., Jung A., Knight K.L. Bacillus subtilis exopolysaccharide prevents allergic eosinophilia. Allergy, 2019, 74(4): 819-821 CrossRef
  7. Kariluoto S., Edelmann M., Herranen M., Lampi A.-M., Shmelev A., Salovaara H., Korhola M., Piironen V. Production of folate by bacteria isolated from oat bran. International Journal of Food Microbiology, 2010, 143(1-2): 41-47 CrossRef
  8. Duan Y.X., Chen T., Chen X., Zhao X.M. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Applied Microbiology and Biotechnology, 2010, 85(6): 1907-1914 CrossRef
  9. Biedendieck R., Malten M., Barg H, Bunk B., Martens J.-H., Deery E., Leech H., Warren M.J., Jahn D. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microbial Biotechnology, 2010, 3(1): 24-37 CrossRef
  10. Lee T.-Y., Kim D.-J., Won J.-N., Lee I.-H., Sung M.-H., Poo H. Oral administration of poly-γ-glutamate ameliorates atopic dermatitis in Nc/Nga mice by suppressing Th2-biased immune response and production of IL-17A. The Journal of Investigative Dermatology, 2014, 134(3): 704-711 CrossRef
  11. Sánchez B., Arias S., Chaignepain S., Denayrolles M., Schmitter J.M., Bressollier P., Urdaci M.S. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology, 2009, 155(5): 1708-1716 CrossRef
  12. Aizawa T., Urai M., Iwabuchi N., Nakajima M., Sunairi M. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). International Journal of Systematic and Evolutionary Microbiology, 2010, 60(1): 61-66 CrossRef
  13. Rairakhwada D., Seo J.-W., Seo M., Kwon O., Rhee S.-K., Kim C.H. Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. Journal of Industrial Microbiology and Biotechnology, 2010, 37(2): 195-204 CrossRef
  14. Chandler D., Bailey A.S., Tatchell G.M., Davidson G., Greaves J., Grant W.P. The development, regulation and use of biopesticides for integrated pest management. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2011, 366(1573): 1987-1998 CrossRef
  15. Raddadi N., Belaouis A., Tamagnini I, Hansen B.M., Hendriksen N.B., Boudabous A., Cherif A., Daffonchio D. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Journal of Basic Microbiology, 2009, 49(3): 293-303 CrossRef
  16. Raddadi N., Cherif A., Boudabous A., Daffonchio D. Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology, 2008, 58: 47-52 CrossRef
  17. Luo C., Liu X., Zhou H., Wang X., Chen Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology, 2015, 81(1): 422-431 CrossRef
  18. Cooper G.M. The cell: a molecular approach. Sinauer Associates, 2000.
  19. Reid C.J., Blau K., Jechalke S., Smalla K., Djordjevic S.P. Whole genome sequencing of Escherichia coli from store-bought produce. Frontiers in Microbiology, 2019, 10: 3050 CrossRef
  20. Xu P., Xie S., Liu W., Jin P., Wei D., Yaseen D.G., Wang Y., Miao W. Comparative genomics analysis provides new strategies for bacteriostatic ability of Bacillus velezensis HAB-2. Frontiers in Microbiology, 2020, 11: 594079 CrossRef
  21. Heo S., Kim J.-H., Kwak M.-S., Sung M.-H., Jeong D.-W. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods, 2021, 10(3): 563 CrossRef
  22. Li Y., Lei L., Zheng L. Xiao X., Tang H., Luo C. Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol. Biofuels, 2020, 13: 34 CrossRef
  23. Silva F.J., Ferreira L.C., Campos V.P., Cruz-Magalhães V., Barros A.F., Andrade J.P., Roberts D.P., de Souza J.T. Complete genome sequence of the biocontrol agent Bacillus velezensis UFLA258 and its comparison with related species: diversity within the commons. Genome Biology and Evolution, 2019, 11(10): 2818-2823 CrossRef
  24. Netrusov A.I., Egorova M.A., Zakharchuk L.M., Kolotilova N.N. Praktikum po mikrobiologii: uchebnoe posobiedlya studentov vysshikh uchebnykh zavedeniy [Workshop on microbiology: a textbook for students of higher school]. Moscow, 2005 (in Russ.).
  25. Il’ina L.A. Izuchenie mikroflory rubtsa krupnogo rogatogo skota na osnove molekulyarnobiologicheskogo metoda T-RFLP s tsel’yu razrabotki sposobov ee optimizatsii. Kandidatskaya dissertatsiya[Study of the cattle rumen microflora using T-RFLP method in order to optimize it. PhD Thesis]. Dubrovitsy, 2012 (in Russ.).
  26. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120 CrossRef
  27. Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y., Stepanauskas R., Clingenpeel S.R., Woyke T., McLean J.S., Lasken R., Tesler G., Alekseyev M.A., Pevzner P.A. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology, 2013, 20(10): 714-737 CrossRef
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069 CrossRef
  29. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., R Edwards.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 2008, 9: 75 CrossRef
  30. Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27-30 CrossRef
  31. Kanehisa M., Goto S., Sato Y., Furumichi M., Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 2012, 40: 109-114 CrossRef
  32. Zaatout N., Ayachi A., Kecha M., Kadlec K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. Journal of Applied Microbiology, 2019, 127(5): 1305-1314 CrossRef
  33. Li R., Jiang D., Zheng M. Tian P., Zheng M., Xu C. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Scientific Reports,2020, 10: 17782 CrossRef
  34. Niazi A., Manzoor S., Bejai S., Meijer J., Bongcam-Rudloff E. Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033. Standards in Genomic Sciences, 2014, 9(3): 718-725 CrossRef
  35. Sella S.R.B.R., Vandenberghe L.P.S., Soccol C.R. Bacillus atrophaeus: main characteristics and biotechnological applications — a review. Critical Reviews in Biotechnology, 2015, 35(4): 533-545 CrossRef
  36. Abraham E.P., Callow D., Gilliver K. Adaptation of Staphylococcus aureus to growth in the presence of certain antibiotics. Nature, 1946, 158(4023): 818-821 CrossRef
  37. Kenig M., Abraham E.P. Antimicrobial activities and antagonists of bacilysin and anticapsin. Journal of General Microbiology, 1976, 94(1): 37-45 CrossRef
  38. Özcengiz G., Öğülür İ. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnology,2015, 32(6): 612-619 CrossRef
  39. Milner J.L., Silo-Suh L., Lee J.C., He H., Clardy J., Handelsman J. Production of kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology, 1996, 62(8): 3061-3065 CrossRef
  40. Rhodes D., Hanson A. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2003, 44: 357-384 CrossRef
  41. Kappes R.M., Kempf B., Bremer E. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. Journal of Bacteriology, 1996, 178(17): 5071-5079 CrossRef
  42. von Blohn C., Kempf B., Kappes R.M., Bremer E. Osmostress response in Bacillus subtilis KR-2: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Molecular Microbiology, 1997, 25(1): 175-187 CrossRef
  43. Lamark T., Styrvold O.B., Strøm A.R. Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiology Letters, 1992, 96(2-3): 149-154 CrossRef
  44. Subhadra B., Surendran S., Lim B.R., Yim J.S., Kim D.H., Woo K., Kim H.-J., Oh M.H., Choi C.H. The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. Journal of Microbiology, 2020, 58(6): 519-529 CrossRef
  45. Kashner D. Baross D., Morita R. Zhizn’ mikrobov v еkstremal’nykh usloviyakh [Life of microbes in extreme environments]. Moscow, 1981 (in Russ.).
  46. Miller K.J., Wood J.M. Osmoadaptation by rhizosphere bacteria. Annual Review of Microbiology, 1996, 50: 101-136 CrossRef
  47. Galinski E.A., Trüper H.G. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews, 1994, 15(2-3): 95-108 CrossRef
  48. Kravchenko L.V., Azarova T.S., Makarova N.M., Tikhonovich I.A. Mikrobiologiya, 2004, 73(2), 195-168 (in Russ.).
  49. Derfling K. Gormony rasteniy. Sistemnyy podkhod [Plant hormones. A system approach]. Moscow, 1985 (in Russ.).
  50. Katsy E.I. Molekulyarnye osnovy vzaimootnosheniy assotsiativnykh mikroorganizmov s rasteniyami [Molecular basis of associative microorganisms—plants interacion]. Moscow, 2005 (in Russ.).
  51. Swain M.R., Naskar S.K., Ray R.C. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis KR-2isolated from culturable cowdung microflora. Polish Journal of Microbiology, 2007, 56(2): 103-110.
  52. Franco-Sierra N.D., Posada L.F., Santa-María G., Romero-Tabarez M., Villegas-Escobar V., Álvarez J.C. Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Functional & Integrative Genomics,2020, 20: 575-589 CrossRef
  53. Chebotar V.K., Voshol G.P., Malfanova N.V., Chizhevskaya E.P., Zaplatkin A.N., Komarova O.V., Baganova M.E., Lazarev A.M., Balakina S.V. Draft genome sequence of plant growth-promoting Bacillus velezensis BS89. Microbiol. Resour. Announc., 2021, 10(1): e01294-20 CrossRef
  54. Sato T., Yamada Y., Ohtani Y., Mitsui N., Murasawa H., Araki S. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. Journal of Bioscience and Bioengineering, 2001, 91(1): 16-20 CrossRef
  55. Sulthana A., Lakshmi S.G., Madempudi R.S. Genome sequencing and annotation of Bacillus subtilis KR-2UBBS-14 to ensure probiotic safety. Journal of Genomics, 2019, 7: 14-17 CrossRef
  56. Frye T.M., Williams S.N., Graham T.W. Vitamin deficiencies in cattle. The Veterinary Clinics of North America. Food Animal Practice, 1991, 7(1): 217-275 CrossRef
  57. Chandrasekaran M., Paramasivan M., Chun S.-C. Bacillus subtilis CBR05 induces Vitamin B6 biosynthesis in tomato through the de novo pathway in contributing disease resistance against Xanthomonas campestris pv. vesicatoria. Scientific Reports, 2019, 9(1): 6495 CrossRef
  58. Barona-Gómez F., Lautru S., Francou F.-X., Leblond P., Pernodet J.-L., Challis G.L. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology, 2006, 152(11): 3355-3366 CrossRef
  59. Baghaee-Ravari S., Heidarzadeh N. Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Archives of Agronomy and Soil Science, 2014, 60(7): 895-905 CrossRef
  60. Abaturov A.E., Kryuchko T.A. Zdorov’e rebenka, 2018, 13(4): 416-425 CrossRef (in Russ.).
  61. Capdevila D.A., Edmonds K.A., Giedroc D.P. Metallochaperones and metalloregulation in bacteria. Essays in Biochemistry, 2017, 61(2): 177-200 CrossRef
  62. Johnstone T.C., Nolan E.M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 2015, 44(14): 6320-6339 CrossRef
  63. Balakrishna A., Kumar N.A. Preliminary studies on siderophore production and probiotic effect of bacteria associated with the Guppy, Poecilia reticulata Peters, 1859. Asian Fisheries Science, 2012, 25: 193-205 CrossRef
  64. Rout M.E., Chrzanowski T.H., Westlie T.K., DeLuca T.H., Callaway R.M., Holben W.E. Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 2013, 100(9): 1726-1737 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)