PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.609eng

UDC: 636.4:619:578:577.2:571.27

Acknowledgements:
Supported financially by the grant No. 075-15-2021-1054 from the Ministry of Education and Science of Russia to implement objectives of the Federal Scientific and Technical Program for the Development of genetic technologies during 2019-2027

 

CURRENT APPROACHES TO THE VACCINE DEVELOPMENT FOR AFRICAN SWINE FEVER (review)

R.S. Chernyshev, A.V. Sprygin, A.S. Igolkin, T.V. Zhbanova,
N.A. Perevozchikova, D.V. Romenskaya, K.N. Gruzdev,
A. Mazloum

Federal Centre for Animal Health,Yuryevets microdistrict, Vladimir Province, Vladimir, 600901 Russia, e-mail сhernishev_rs@arriah.ru, sprygin@arriah.ru, igolkin_as@arriah.ru, zhbanova@arriah.ru, perevozchikova@arriah.ru, romenskaya@arriah.ru, gruzdev@arriah.ru, mazlum@arriah.ru (✉ corresponding author)

ORCID:
Chernyshev R.S. orcid.org/0000-0003-3604-7161
Perevozchikova N.A. orcid.org/0000-0002-5217-3259
Sprygin A.V. orcid.org/0000-0001-5982-3675
Romenskaya D.V. orcid.org/0000-0002-2443-1898
Igolkin A.S. orcid.org/0000-0002-5438-8026
Gruzdev K.N. orcid.org/0000-0003-3159-1969
Zhbanova T.V. orcid.org/0000-0002-9857-5915
Mazloum Ali orcid.org/0000-0002-5982-8393

Received March 28, 2022

African swine fever (ASF), first described in 1921 by R.E. Montgomery (R.E. Montgomery, 1921), has been a major problem in pig production for over 100 years. The search for effective and universal specific vaccine variants started back in 1933 (J. Walker, 1933). This article presents a literature review on the most important and successful events in the history of ASF vaccine development, presenting the approaches on developing attenuated (C. Muñoz‐Pérez et al, 2021), inactivated (E. Cadenas-Fernández et al., 2021), subunit (J.G. Neilan et al., 2004) and live vectored (J.K. Jancovich et al., 2018) vaccines. The widespread use of naturally attenuated non-hemadsorbing isolates as vaccines in the second half of the 20th century in European countries led to a persistent chronic ASF infection in a big number of pigs (J. Manso Ribeiro et al., 1963). Successive passages of field isolates of the ASF virus in many cell cultures did not show the proper result in weakening the virulent properties of the pathogen, despite genetic changes in the virus genome (I. Titov et al., 2017). Only modern technologies (e.g., homologous recombination and CRISPR-Cas9 genome editing) for obtaining genetically modified virus ASFV-G-ΔI177L by deleting specific genes in the genome led to the creation of effective candidate vaccines (M.V. Borca et al., 2020). Inactivated, as well as subunit vaccines based on recombinant proteins, caused the formation of specific humoral immune responses in high titers, but did not confer protective properties (G. Burmakina et al., 2016). Live vectored vaccines have become a new milestone in the fight against infectious animal diseases, in particular ASF; human adenovirus 5 (rAd) and modified vaccinia Ankara (MVA) are among the vectors for the development of such vaccines (L.C. Goatley et al., 2020). Attenuated vaccines based on genetically modified viruses with a deletion of specific genes I226R and 18-7GD require international expertise for further registration and use in veterinary practice.

Keywords: African swine fever, ASF, vaccines, inactivated vaccine, attenuated vaccine, DNA-vaccine, recombinant vaccine, CRISPR-Cas9.

 

REFERENCES

  1. Urbano A.C., Forth J.H., Olesen A., Dixon L., Rasmussen T., Cackett G., Werner F., Karger A., Andrés G., Wang X., Pérez-Núñez D., Galindo I., Malogolovkin A., Revilla Y., Alonso C., Gallardo C., Blome S., Arabyan E., Zakaryan H., Ferreira F. African swine fever virus: cellular and molecular aspects. In: Understanding and combatting African swine fever. A European perspective. L. Iacolina, M.-L. Penrith, S. Bellini, E. Chenais, F. Jori, M. Montoya, K. Ståhl, D. Gavier-Widén (eds.). Wageningen Academic Publishers, 2021: 25-61 CrossRef
  2. Dixon L.K., Chapman D.A.G., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14 CrossRef
  3. Balyshev V.M., Bolgova M.V., Balysheva V.I., Bolgova M.V., Knyazeva M.V. Voprosy normativno-pravovogo regulirovaniya v veterinarii, 2015, 2: 23-25 (in Russ.).
  4. Quembo C.J., Jori F., Vosloo W., Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018, 665(2): 420-431 CrossRef
  5. Nix R.J., Gallardo C., Hutchings G., Blanco E., Dixon L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Archives of Virology, 2006, 151(12): 2475-2494 CrossRef
  6. Mazloum A., Igolkin A.S., Vlasova N.N. African swine fever virus: use genetic markers in analysis of its routes of spread. Veterinary Science Today, 2019, 30: 9-14 CrossRef
  7. Beltrán-Alcrudo D., Lubroth J., Depner K., Rocque S. African swine fever in the Caucasus. EMPRES Watch, 2008, 1: 1-8 CrossRef
  8. Rossel’khoznadzor. Federal’naya sluzhba po veterinarnomu i fitosanitarnomu nadzoru. Еpizooticheskaya situatsiya po AChS na territorii Rossiyskoy Federatsii v 2007 g [Epizootic situation on ASF in the territory of the Russian Federation in 2007]. Available: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/archive/asf_2007.pdf. Accessed: 16.01.2022 (in Russ.).
  9. Rossel’khoznadzor. Federal’naya sluzhba po veterinarnomu i fitosanitarnomu nadzoru. Еpizooticheskaya situatsiya po AChS na territorii Rossiyskoy Federatsii i stran Vostochnoy Evropy. Dannye MЕB s 2007 po 2020 gg [Epizootic situation on ASF in the territory of the Russian Federation and Eastern European countries. OIE data from 2007 to 2020]. Available: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2020/09-14/05.pdf. Accessed: 16.01.2022 (in Russ.).
  10. Rossel’khoznadzor. Federal’naya sluzhba po veterinarnomu i fitosanitarnomu nadzoru. Еpizooticheskaya situatsiya po AChS na territorii Rossiyskoy Federatsii i stranakh Evropy i Azii. Dannye MЕB s 2007 po 2021 gg [The epizootic situation on ASF in the territory of the Russian Federation and the countries of Europe and Asia. OIE data from 2007 to 2021]. Available: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2022/01-18/04.pdf. Accessed: 18.01.2022 (in Russ.).
  11. OIE — World Organization for Animal Health. Analytics: Quantitative data. Available: https://wahis.oie.int/#/dashboards/qd-dashboard. Accessed: 18.12.2021.
  12. OIE — World Organization for Animal Health. African swine fever (ASF) — Situation report. Report Date: 03.12.2021. Available: https://www.oie.int/app/uploads/2021/12/report-65-current-situation-of-asf.pdf. Accessed: 18.12.2021.
  13. Beltrán-Alcrudo D., Arias M., Gallardo C., Kramer S., Penrith M.L. African swine fever: detection and diagnosis — a manual for veterinarians. FAO, 2017.
  14. Wilkinson P.J., Pegram R.G., Perry B.D., Lemche J., Schels H.F. The distribution of African swine fever virus isolated from Ornithodoros moubata in Zambia. Epidemiology and Infection, 1988, 101(3): 547-564 CrossRef
  15. Makarov V.V., Sukharev O.I., Tsvetnova I.V. Veterinarnaya praktika, 2013, 1: 6-16 (in Russ.).
  16. Makarov V.V. Afrikanskaya chuma sviney [African swine fever]. Moscow, 2011 (in Russ.).
  17. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Research, 2013, 173(1): 101-109 CrossRef
  18. Gaudreault N., Richt J. Subunit vaccine approaches for African swine fever virus. Vaccines, 2019, 7(2): 56 CrossRef
  19. Halstead S.B., Mahalingam S., Marovich M.A., Ubol S., Mosser D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. The Lancet Infectious Diseases, 2010, 10(10): 712-722 CrossRef
  20. Suhrbier A., La Linn M. Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. Trends in Immunology, 2003, 24(4): 165-168 CrossRef
  21. Netherton C.L., Goatley L.C., Reis A.L., Portugal R., Nash R.H., Morgan S.B., Gault L., Nieto R., Norlin V., Gallardo C., Ho C.S., Sánchez-Cordón P.J., Taylor G., Dixon L.K. Identification and immunogenicity of african swine fever virus antigens. Front. Immunol., 2019, 10: 1318 CrossRef
  22. Muñoz‐Pérez C., Jurado C., Sánchez-Vizcaíno J. African swine fever vaccine: turning a dream into reality. Transboundary and Emerging Diseases, 2021. 68(5): 2657-2668 CrossRef
  23. Mendonza C., Videgain S.P., Alonso F. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science, 1991, 51(3): 317-321 CrossRef
  24. Martins C., Lawman M., Schol T., Mebus C., Lunney J. African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology, 1993, 129(1-4): 211-225 CrossRef
  25. Ribeiro A.S., Arala-Chaves M.P., Vilanova M., Porto M.T., Coutinho A. Role of B and T lymphocytes in the specific immunosuppression induced by a protein released by porcine monocytes infected with African swine fever virus. International Immunology, 1991, 3(2): 165-74 CrossRef
  26. Vilanova M., Ferreira P., Ribeiro A., Arala-Chaves M. The biological effects induced in mice by p36, a proteinaceous factor of virulence produced by African swine fever virus, are mediated by interleukin-4 and also to a lesser extent by interleukin-10. Immunology, 1999, 96(3): 389-395 CrossRef
  27. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., Vlasova N., Shevtsov A. A long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013-2018. Veterinary Sciences, 2019, 6(4): 99 CrossRef
  28. Zsak L., Onisk D.V., Afonso C.L., Rock D.L. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology, 1993, 196(2): 596-602 CrossRef
  29. Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 CrossRef
  30. Gómez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibáñez F., Ruiz-Gonzalvo F., Alonso C., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology, 1996, 70(8): 5689-5694 CrossRef
  31. Alonso C., Miskin J., Hernáez B., Fernandez-Zapatero P., Soto L., Cantó C., Rodríguez-Crespo I., Dixon L., Escribano J.M. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. Journal of Virology, 2001, 75(20): 9819-9827 CrossRef
  32. Hernáez B., Tarragó T., Giralt E., Escribano J.M., Alonso C. Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. Journal of Virology, 2010, 84(20): 10792-10801 CrossRef
  33. Walker J. East African swine fever. University of Zürich, 1933.
  34. Stone S.S., DeLay P.D., Sharman E.C. The antibody response in pigs inoculated with attenuated African swine fever virus. Can. J. Comp. Med., 1968, 32(3): 455-460.
  35. Hamdy F.M., Dardiri A.H. Clinical and immunologic responses of pigs to African swine fever virus isolated from the Western Hemisphere. American Journal of Veterinary Research, 1984, 45(4): 711-804.
  36. Boinas F., Hutchings G., Dixon L., Wilkinson P. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol., 2004, 85: 2177-2187 CrossRef
  37. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R., Portugal F.C., Vigário J.D., Martins C.L.V. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol., 2001, 82(3): 513-523 CrossRef
  38. Vigário J.D., Terrinha A.M., Moura Nunes J.F. Antigenic relationships among strains of African swine fever virus. Archiv für die gesamte Virusforschung, 1974, 45(3): 272-277 CrossRef
  39. King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K., Takamatsu H.H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600 CrossRef
  40. Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404 CrossRef
  41. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Frontiers inVeterinary Science, 2019, 6: 137 CrossRef
  42. Barasona J.A., Cadenas-Fernández E., Kosowska A., Barroso-Arévalo S., Rivera B., Sánchez R., Porras N., Gallardo C., Sánchez-Vizcaíno J.M. Safety of African swine fever vaccine candidate Lv17/WB/Rie1 in wild boar: overdose and repeated doses. Frontiers in Immunology, 2021, 12: 761753 CrossRef
  43. Enjuanes L., Carrascosa A.L., Moreno M.A., Viñuela E. Titration of African swine fever (ASF) virus. J. Gen. Virol., 1976, 32(3): 471-477 CrossRef
  44. Titov I., Burmakina G., Morgunov Y., Morgunov S., Koltsov A., Malogolovkin A., Kolbasov D. Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge. Archives of Virology, 2017, 162(10): 3081-3088 CrossRef
  45. Elsukova A.A., Shevchenko I.V., Varentsova A., Puzankova O.S., Zhukov I.Y., Pershin A.S., Remyga S.G., Zinyakov N.G., Mazloum A., Vlasov I.N., Igolkin A.S., Lozovoy D.A., Gruzdev K.N., Vlasova N.N. Biological properties of African swine fever virus Odintsovo 02/14 isolate and its genome analysis. International Journal of Environmental and Agriculture Research, 2017, 3: 26-37 CrossRef
  46. Mazloum A., Zinyakov N.G., Pershin A.S., Shevchenko I.V., Zhukov I.Y., Fedoseyeva D.N., Sharypova D.V., Igolkin A.S., Vlasova N.N. Analysis of changes in African swine fever virus genetic structure and biological properties during adaptation to continuous cell culture. Veterinary Science Today, 2018, 27: 21-25 CrossRef
  47. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14 CrossRef
  48. Mazloum A., Igolkin A.S., Zinyakov N.G., Van Schalkwyk A., Vlasova N.N. Changes in the genome of African swine fever virus (Asfarviridae: Asfivirus: African swine fever virus) associated with adaptation to reproduction in continuous cell culture. Voprosyvirusologii, 2021, 66(3): 211-216 CrossRef
  49. Krug P.W., Holinka L.G., O'Donnell V., Reese B., Sanford B., Fernandez-Sainz I., Gladue D.P., Arzt J., Rodriguez L., Risatti G.R., Borca M.V. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology, 2015, 89(4): 2324-2332 CrossRef
  50. O’Donnell V., Risatti G.R., Holinka L.G., Krug P.W., Carlson J., Velazquez-Salinas L., Azzinaro P.A., Gladue D.P., Borca M.V. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology, 2016, 91(1): e01760-16 CrossRef
  51. Moore D.M., Zsak L., Neilan J.G., Lu Z., Rock D.L. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. Journal of Virology, 1998, 72(12): 10310-10315 CrossRef
  52. Sanford B., Holinka L., O’Donnell V., Krug P., Carlson J., Alfano M., Carrillo C., Wu P., Lowe A., Risatti G., Gladue D., Borca M. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Research, 2016, 213: 165-171 CrossRef
  53. O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., Arzt J., Reese B., Carrillo C., Risatti G.R., Borca M.V. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology, 2015, 89(11): 6048-6056 CrossRef
  54. Lewis T., Zsak L., Burrage T.G., Lu Z., Kutish G.F., Neilan J.G., Rock D.L. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. Journal of Virology, 2000, 74(3): 1275-1285 CrossRef
  55. Wu L., Yang B., Yuan X., Hong J., Peng M., Chen J.L., Song Z. Regulation and evasion of host immune response by African swine fever virus. Frontiers in Microbiology, 2021, 12: 698001 CrossRef
  56. Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa-Fiz F., Accensi F., Navas M.J., Vidal E., Bustos M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L., Rodríguez F. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology, 2017, 91(21): e01058-17 CrossRef
  57. Lopez E., van Heerden J., Bosch-Camós L., Accensi F., Navas M.J., López-Monteagudo P., Argilaguet J., Gallardo C., Pina-Pedrero S., Salas M.L., Salt J., Rodriguez F. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses, 2020, 12(12): 1474 CrossRef
  58. Reis A.L., Goatley L.C., Jabbar T., Sanchez-Cordon P.J., Netherton C.L., Chapman D.A.G., Dixon L.K. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. Journal of Virology, 2017, 91(24): e01428-17 CrossRef
  59. Gallardo C., Sánchez E.G., Pérez-Núñez D., Nogal M., de León P., Carrascosa Á.L., Nieto R., Soler A., Arias M.L., Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018, 36(19): 2694-2704 CrossRef
  60. Chen W., Zhao D., He X., Liu R., Wang Z., Zhang X., Li F., Shan D., Chen H., Zhang J., Wang L., Wen Z., Wang X., Guan Y., Liu J., Bu Z. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci,, 2020, 63(5): 623-634 CrossRef
  61. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Holinka L.G., Velazquez-Salinas L., Zhu J., Gladue D.P. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Journal of Virology, 2020, 94: e02017-19 CrossRef
  62. Borca M.V., Rai A., Ramirez-Medina E., Silva E., Velazquez-Salinas L., Vuono E., Pruitt S., Espinoza N., Gladue D.P. A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. Journal of Virology, 2021, 95(14): e0012321 CrossRef
  63. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Espinoza N., Velazquez-Salinas L., Gay C.G., Gladue D.P. ASFV-G-∆I177L as an effective oral nasal vaccine against the Eurasia strain of Africa swine fever. Viruses, 2021, 13(5): 765 CrossRef
  64. Tran X.H., Le T.T.P., Nguyen Q.H., Do T.T., Nguyen V.D., Gay C.G., Borca M.V., Gladue D.P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2021, 69: e497-e504 CrossRef
  65. Zhang Y., Ke J., Zhang J., Yang J., Yue H., Zhou X., Qi Y., Zhu R., Miao F., Li Q., Zhang F., Wang Y., Han X., Mi L., Yang J., Zhang S., Chen T., Hu R. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever. Journal of Virology, 2021, 95(23): e0119921 CrossRef
  66. Stone S.S., Hess W.R. Antibody response to inactivated preparations of African swine fever virus in pigs. American Journal of Veterinary Research, 1967, 28(123): 475-481.
  67. Forman A.J., Wardley R.C., Wilkinson P.J. The immunological response of pigs and Guinea pigs to antigens of African swine fever virus. Archives of Virology, 1982, 74(2-3): 91-100 CrossRef
  68. Bommeli W., Kihm U., Ehrensperger F. Preliminary study on immunization of pigs against African swine fever In: Proceedings of a CEC/FAO Research Seminar, Sassari, Sardinia, Italy, 23-25 September 1981. Sassari, 1981: 217-223.
  69. Cadenas-Fernández E., Sánchez-Vizcaíno J.M., van den Born E., Kosowska A., van Kilsdonk E., Fernández-Pacheco P., Gallardo C., Arias M., Barasona J.A. High doses of inactivated African Swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines, 2021, 9(3): 242 CrossRef
  70. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882 CrossRef
  71. Ruiz-Gonzalvo F., Rodríguez F., Escribano J.M. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology, 1996, 218(1): 285-289 CrossRef
  72. Carrascosa A.L., Sastre I., Viñuela E. Production and purification of recombinant African swine fever virus attachment protein p12. Journal of Biotechnology, 1995, 40(2): 73-86 CrossRef
  73. Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998, 243(2): 461-471 CrossRef
  74. Barderas M.G., Rodríguez F., Gómez-Puertas P., Avilés M., Beitia F., Alonso C., Escribano J.M. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Archives of Virology, 2001, 146(9): 1681-1691 CrossRef
  75. Burmakina G., Malogolovkin A., Tulman E.R., Zsak L., Delhon G., Diel D.G., Shobogorov N.M., Morgunov Y.P., Morgunov S.Y., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J. Gen. Virol., 2016, 97(7): 1670-1675 CrossRef
  76. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 2004, 319(2): 337-342 CrossRef
  77. Argilaguet J.M., Pérez-Martín E., López S., Goethe M., Escribano J.M., Giesow K., Keil G.M., Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res., 2013, 98(1): 61-65 CrossRef
  78. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A., Rodríguez F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): e40942 CrossRef
  79. Cadenas-Fernández E., Sánchez-Vizcaíno J.M., Kosowska A., Rivera B., Mayoral-Alegre F., Rodríguez-Bertos A., Yao J., Bray J., Lokhandwala S., Mwangi W., Barasona J.A. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent arm07 isolate in Eurasian wild boar. Pathogens, 2020, 9(3): 171 CrossRef
  80. Lokhandwala S., Waghela S.D., Bray J., Sangewar N., Charendoff C., Martin C.L., Hassan W.S., Koynarski T., Gabbert L., Burrage T.G., Brake D., Neilan J., Mwangi W. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS ONE, 2017, 12(5): e0177007 CrossRef
  81. Jancovich J.K., Chapman D., Hansen D.T., Robida M.D., Loskutov A., Craciunescu F., Borovkov A., Kibler K., Goatley L., King K., Netherton C.L., Taylor G., Jacobs B., Sykes K., Dixon L.K. Immunization of pigs by DNA Prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Journal of Virology, 2018, 92(8): e02219-17 CrossRef
  82. Sunwoo S.Y., Pérez-Núñez D., Morozov I., Sánchez E.G., Gaudreault N.N., Trujillo J.D., Mur L., Nogal M., Madden D., Urbaniak K., Kim I.J., Ma W., Revilla Y., Richt J.A. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines, 2019, 7(1): 12 CrossRef
  83. Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., Ho C.S., Montoya M., Sánchez-Cordón P.J., Taylor G., Dixon L.K., Netherton C.L. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines, 2020, 8(2): 234 CrossRef
  84. Hübner A., Petersen B., Keil G.M., Niemann H., Mettenleiter T.C., Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci. Rep., 2018, 8(1): 1449 CrossRef
  85. Abkallo H.M., Svitek N., Oduor B., Awino E., Henson S.P., Oyola S.O., Mwalimu S., Assad-Garcia N., Fuchs W., Vashee S., Steinaa L. Rapid CRISPR/Cas9 editing of genotype IX African swine fever virus circulating in Eastern and Central Africa. Frontiers in Genetics, 2021, 12: 733674 CrossRef
  86. You S., Liu T., Zhang M., Zhao X., Dong Y., Wu B., Wang Y., Li J., Wei X., Shi B. African swine fever outbreaks in China led to gross domestic product and economic losses. Nature Food, 2021, 2: 802-808 CrossRef
  87. Manso Ribeiro J., Nines Petisca J.L., Lopes Frizão F., Sobral M. Vaccination contre la peste porcine africaine. Bulletin de l’Office International des Epizooties, 1963, 80: 921-937.
  88. Ramirez-Medina E., Vuono E., Rai A., Pruitt S., Espinoza N., Velazquez-Salinas L., Pina-Pedrero S., Zhu J., Rodriguez F., Borca M.V., Gladue D.P. Deletion of E184L, a putative DIVA target from the pandemic strain of African Swine fever virus, produces a reduction in virulence and protection against virulent challenge. Journal of Virology, 2022, 96(1): e0141921 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)