PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.4.628eng

UDC: 636.08.003:636.085.16:591.1

Acknowledgements:
Supported financially from the Russian Scince Foundation (projects Nos. 22-16-00024 and 19-16-00068-П)

 

ANTIOXIDANT STATUS AND QUALITY OF POULTRY AND ANIMAL MEAT UNDER STRESS AND ITS CORRECTION WITH THE USE OF VARIOUS ADAPTOGENS (review)

N.V. Bogolyubova , R.V. Nekrasov, A.A. Zelenchenkova

Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail 652202@mail.ru (✉ corresponding author), nek_roman@mail.ru, aly4383@mail.ru

ORCID:
Bogolyubova N.V. orcid.org/0000-0002-0520-7022
Zelenchenkova A.A. orcid.org/0000-0001-8862-3648
Nekrasov R.V. orcid.org/0000-0003-4242-2239

Received May 21, 2022

Modern animal breeds and poultry crosses do not fully realize their genetic potential for productivity due to the impact of various stresses (V.I. Fisinin et al., 2015). Recently, there has been a marked public concern about the negative impact of intensive rearing on animal health, food safety and quality. Animal health and welfare are prerequisites for both productive performance and obtaining products that are safe for human (K. Proudfoot et al., 2015). Oxidative stress caused by an imbalance between production and accumulation of oxygen reactive species (ROS) and the ability of a biological system to detoxify these reactive products under feed, climatic, technological, and biological stresses negatively affects health, growth rates and product quality. Due to the high level of polyunsaturated fatty acids and non-heme iron Fe3+ and Fe2+, chicken meat is most susceptible to lipid peroxidation compared to beef and pork (I.F. Gorlov et al., 2016). The present review paper summarizes the current state of knowledge on the influence of stress factors, including housing conditions (climatic, stocking density), transportation, feeding, veterinary measures on the antioxidant status, meat oxidative properties and quality on the example of chickens and broilers. Climatic and other conditions determine behavioral, physiological and immune responses of birds, affect their antioxidant, biochemical status and productivity. Meat quality deteriorates, as can be seen from changes in pH, muscle protein structure, increased lipid oxidation and the appearance of meat defects (K. Rosenvold et al., 2003; M. Petracci et al., 2015; P.F. Surai et al., 2019). The negative impact on meat quality depends on the type of stresses (chronic or acute), the animal genotype, and the type of muscle fibers (N.A. Mir et al., 2017; P.A. Gonzalez-Rivas et al., 2020; M. Zhang et al., 2020). Transport stress is the result of the simultaneous action of several stress factors (L. Zhang et al., 2014). The intensity of the impact on the body and the change in biochemical markers of stress depends on the conditions of transportation, feeding and keeping, individual characteristics and health status of the bird. Data on the impact of stress on metabolism in animals and birds are rather contradictory. The use of synthetic or natural antioxidants in animal husbandry is currently being discussed due to their ability to influence oxidative stress and meat quality (A. Gouda et al., 2020). This review also provides an analysis of ways to improve the antioxidant protection and meat quality using natural adaptogens (vitamins E and C, taxifolin and quercetin) as feed additives (M. Mazur-Kuśnirek et al., 2019; V.R. Pirgozliev et al., 2020). The study of biomarkers of antioxidant protection is essential for obtaining high quality meat. The use of antioxidants enhances antioxidant protection, increases animal resistance, and improves product quality. This method of preventing the negative effects of stress in animal husbandry and poultry farming is considered the most acceptable and cheapest, especially when natural adaptogens are combined in the diet, which can be more effective than the action of each adaptogen separately.

Keywords: stress, meat quality, antioxidant status, vitamin E. vitamin C, taxifolin, quercetin.

 

REFERENCES

  1. Fisinin V.I., Kavtrashvili A.Sh. Heat stress in poultry. I. Danger, related physiological changes and symptoms (review) Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 2(50): 162-171 CrossRef
  2. Rovers A., Brümmer N., Christoph-Schulz I. Citizens’ perception of different aspects regarding German livestock production. In: Proc. 12th International forum on system dynamics and innovation in food networks. Innsbruck-Igls, Austria, 2018: 208-215.
  3. Proudfoot K., Habing G. Social stress as a cause of diseases in farm animals: Current knowledge and future directions. The Veterinary Journal, 2015, 206(1): 15-21 CrossRef
  4. Ouali A., Herrera-Mendez C.H., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M.A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, 2006, 74(1): 44-58 CrossRef
  5. Xing T., Zhao X., Wang P., Chen H., Xu X., Zhou G. Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle. Journal of Animal Science, 2017, 95(4): 1565-1573 CrossRef
  6. Surai P.F., Kochish I.I., Fisinin V.I., Kidd M.T. Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants, 2019, 8(7): E235 CrossRef
  7. Sies H., Berndt C., Jones D.P. Oxidative stress. Annual Review of Biochemistry, 2017, 86: 1-34 CrossRef
  8. Estévez M. Oxidative damage to poultry: from farm to fork. Poultry Science, 2015, 94(6): 1368-1378 CrossRef
  9. Mishra B., Jha R. Oxidative stress in the poultry gut: potential challenges and interventions. Frontiers in Veterinary Science, 2019, 6: 60 CrossRef
  10. Surai P.F., Fisinin V.I. Vitagenes in poultry production. Part 1. Technological and environmental stresses. World’s Poultry Science Journal, 2016, 72(4): 721-733 CrossRef
  11. Bogolyubova N.V., Chabaev M.G., Fomichev Yu.P., Tsis E.Yu., Semenova A.A., Nekrasov R.V. Ways to reduce adverse effects of stress in pigs using nutritional factors. Ukrainian Journal of Ecology, 2019, 9(2): 239-245 CrossRef
  12. Petracci M., Mudalal S., Soglia F., Cavani C. Meat quality in fast-growing broiler chickens. World's Poultry Science Journal, 2015, 71(2): 363-374 CrossRef
  13. Zhang M. Dunshea F.R., Warner R.D., DiGiacomo K., Osei-Amponsah R., Chauhan S.S. Impacts of heat stress on meat quality and strategies for amelioration: a review. International Journal of Biometeorology, 2020, 64(9): 1613-1628 CrossRef
  14. Estevez M., Petracci M. Benefits of magnesium supplementation to broiler subjected to dietary and heat stress: improved redox status, breast quality and decreased myopathy incidence. Antioxidants, 2019, 8(10): 456 CrossRef
  15. Pietrzak E., Dunislawska A., Siwek M., Zampiga M., Sirri F., Meluzzi A., Tavaniello S., Maiorano G., Slawinska A. Splenic gene expression signatures in slow-growing chickens stimulated in ovo with galactooligosaccharides and challenged with heat. Animals, 2020, 10(3): 474 CrossRef
  16. Hofmann T., Schmucker S.S., Bessei W., Grashorn M., Stefanski V. Impact of housing environment on the immune system in chickens: a review. Animals, 2020, 10(7): 1138 CrossRef
  17. He X., Lu Z., Ma B., Zhang L., Li, J., Jiang, Y., Zhou G., Gao F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. Journal of the Science of Food and Agriculture, 2018, 98(12): 4471-4478 CrossRef
  18. Shakeri M., Cottrell J.J., Wilkinson S., Le H.H., Suleria H.A., Warner R.D., Dunshea F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants, 2019, 8(9): 336 CrossRef
  19. Sahin K., Sahin N., Kucuk O., Hayirli A., Prasad A.S. Role of dietary zinc inheat-stressed poultry: a review. Poultry Science, 2009, 88(10): 2176-2183 CrossRef
  20. Abidin Z., Khatoon A. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World's Poultry Science Journal, 2013, 69(1): 135-152 CrossRef
  21. Borges S.A., Fischer DaSilva A.V., Majorka A., Hooge D.M., Cummings K.R. Physiological responses of broiler chicken to heat stress and electrolyte balance (sodium plus potassium minus chloride, milliequivalent per kilogram). Poultry Science, 2004, 83(9): 1551-1558 (doi: 10.1093/ps/83.9.1551">CrossRef
  22. Attia Y.A., Hassan R.A., Qota E.M. Recovery from adverse effects of heat stress on slow growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Tropical Animal Health and Production, 2009, 41: 807-818 CrossRef
  23. Yahav S., McMurty J. Thermo tolerance acquisition in broiler chickens by temperature conditioning early in life — the effect of timing and ambient temperature. Poultry Science, 2001, 80(12): 1662-1666 CrossRef
  24. Garriga C., Hunter R.R., Amat C., Planas J.M., Mitchell M.A., Moretó M. Heat stress increases apical glucose transport in the chicken jejunum. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(1): 195-201 CrossRef
  25. Al-Homidan A.H. Effect of environmental factors on ammonia and dust production and broiler performance. British Poultry Science, 1998, 39: 9-10 CrossRef
  26. Donker R.A., Neeuwland M.G., van der Zijpp A.J. Heat-stress influences on antibodyproduction in chicken lines selected for high and low immune responsivness. Poultry Science, 1990, 69(4): 599-607 CrossRef
  27. Pirgozliev V.R., Westbrook C.A., Woods S.L., Mansbridge S.C., Rose S.P., Whiting I.M., Yovchev D.G., Atanasov A.G., Kljak K., Staykova G.P., Ivanova S.G., Karageçili M.R., Karadas F., Stringhini J.H. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Archives of Animal Nutrition, 2020, 74(6): 496-511 CrossRef
  28. Attia Y.A., Al-Harthi M.A., Elnaggar A.Sh. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Italian Journal of Animal Science, 2018, 17(3): 686-697 CrossRef
  29. Xing T., Gao F., Tume R.K., Zhou G. H., Xu X.L. Stress effects on meat quality: a mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(2): 380-401 CrossRef
  30. Altan Ö., Pabuçcuoğlu A., Altan A., Konyalioglu S., Bayraktar H. Effect of heat stresson oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science, 2003, 44(4): 545-550 CrossRef
  31. Sen C.K. Oxidants and antioxidants in exercise. Journal of Applied Physiology, 1995, 79(3): 675-686 CrossRef
  32. Clanton T.L., Hypoxia-induced reactive oxygen species formation in skeletal muscle. Journal of Applied Physiology, 2007, 102(6): 2379-2388 CrossRef
  33. Mujahid A., Akiba Y., Toyomizu M. Acute heat stress induces oxidative stress anddecreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poultry Science, 2007, 86(2): 364-371 CrossRef
  34. Leishman E.M., Ellis J., van Staaveren N., Barbut S., Vanderhout R.J., Osborne V.R., Wood B.J., Harlander-Matauschek A., Baes C.F., Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poultry Science, 2021, 100(11): 101471 CrossRef
  35. Hashizawa Y., Kubota M., Kadowaki M., Fujimura S. Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions. Animal Science Journal, 2013, 84(11): 732-736 CrossRef
  36. Gonzalez-Rivas P.A., Chauhan S.S., Ha M., Fegan N., Dunshea F.R., Warner R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: a review. Meat Science, 2020, 162: 108025 CrossRef
  37. Mir N.A., Rafiq A., Kumar F., Singh V., Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. Journal of Food Science and Technology, 2017, 54: 2997-3009 CrossRef
  38. Temim S., Chagneau A.-M., Peresson R., Tesseraud S. Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. The Journal of Nutrition, 2000, 130(4): 813-819 CrossRef
  39. Ezzine S.B.-O., Everaert N., Metayer-Coustard S., Rideau N., Berri C., Joubert R., Temim S., Collin A., Tesseraud S. Effects of heat exposure on Akt/S6K1 signaling and expression of genes related to protein and energy metabolism in chicken (Gallus gallus) pectoralis major muscle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010, 157(3): 281-287.
  40. Akşit M., Yalcin S., Özkan S., Metin K., Özdemir D. Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poultry Science, 2006, 85(11): 1867-1874 CrossRef
  41. Love J.D., Pearson A.M. Lipid oxidation in meat and meat products—a review. Journal of the American Oil Chemists' Society, 1971, 48(10): 547-549 CrossRef
  42. Huang C., Jiao H., Song Z., Zhao J., Wang X., Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. Journal of Animal Science, 2015, 93(5): 2144-2153 CrossRef
  43. Feng J.-H., Zhang M.-H., Zheng S.-S., Xie P., Li J.-Q. The effect of cyclic high temperature on mitochondrial ROS production, Ca2+-ATPase activity and breast meat quality of broilers. Acta Veterinaria Et Zootechnica Sinica, 2006, 37(12): 1304-1311.
  44. Mujahid A., Yoshiki Y., Akiba Y., Toyomizu, M. Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poultry Science, 2005, 84(2): 307-314 CrossRef
  45. Baziz H.A., Geraert P.A., Padilha J.C.F., Guillaumin S. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poultry Science, 1996, 75(4): 505-513 CrossRef
  46. Lu Q., Wen J., Zhang H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry Science, 2007, 86(6): 1059-1064 CrossRef
  47. Zhang L., Yi Y., Guo Q., Sun Y., Ma S., Xiao S., Geng J., Zheng Z., Song S. Hsp90 interacts with AMPK and mediates acetyl-CoA carboxylase phosphorylation. Cellular Signalling, 2012, 24(4): 859-865 CrossRef
  48. Ma B., He X., Lu Z., Zhang L., Li J., Jiang Y., Zhou G., Gao F. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poultry Science, 2018, 97(12): 4150-4158 CrossRef
  49. Lu Z., He X., Ma B., Zhang L., Li J., Jiang, Y., Zhou G., Gao F. Dietary taurine supplementation improves breast meat quality in chronic heat-stressed broilers via activating Nrf2 pathway and protecting mitochondria from oxidative attack. Journal of the Science of Food and Agriculture, 2018, 99(3): 1066-1072 CrossRef
  50. Jiang N., Wang P., Xing T., Han M., Xu X. An evaluation of the effect of water-misting sprays with forced ventilation on the occurrence of pale, soft, and exudative meat in transported broilers during summer: impact of the thermal microclimate. Journal of Animal Science, 2016, 94(5): 2218-2227 CrossRef
  51. Xing T., Li Y.H., Li M., Jiang N.N., Xu X.L., Zhou G.H. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat. Animal Science Journal, 2016, 87(11): 1413-1420 CrossRef
  52. Zhang C., Zhao X., Wang L., Yang L., Chen X., Geng Z. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status. Animal Science Journal, 2017, 88(10): 1569-1574 CrossRef
  53. Li W., Wei F., Xu B., Sun Q., Deng W., Ma H., Bai J., Li S. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers. Asian-Australasian Journal of Animal Sciences, 2019, 32(12): 1914-1922 CrossRef
  54. Goo D., Kim J.H., Park G.H., Delos Reyes J.B., Kil D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals, 2019, 9(3): 107 CrossRef
  55. Wang B., Min Z., Yuan J., Zhang B., Guo Y. Effects of dietary tryptophan and stocking density on the performance, meat quality, and metabolic status of broilers. Journal of Animal Science and Biotechnology, 2014, 5(1): 44 CrossRef
  56. Yu D.G., Namgung N., Kim J.H., Won S.Y., Choi W.J., Kil D.Y. Effects of stocking density and dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators in broiler chickens. Journal of Animal Science and Technology, 2021, 63(4): 815-826 CrossRef
  57. Castellini C., Mugnai C., Dal Bosco A. Effect of organic production system on broiler carcass and meat quality. Meat Science, 2002, 60(3): 219-225 CrossRef
  58. Perai A.H., Kermanshahi H., Moghaddam H.N., Zarban A. Effects of supplemental vitamin C and chromium on metabolic and hormonal responses, antioxidant status, and tonic immobility reactions of transported broiler chickens. Biological Trace Element Research, 2014, 157: 224-233 CrossRef
  59. Zhang L., Li J.L., Gao T., Lin M., Wang X.F., Zhu X.D., Gao F., Zhou G.H. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress. Animal, 2014, 8(12): 1955-1962 CrossRef
  60. Tamzil M.H., Indarsih B., Jaya I.N.S. Rest before slaughtering alleviates transportation stress and improves meat quality in broiler chickens. International Journal of Poultry Science, 2019, 18(12): 585-590 CrossRef
  61. Han H.-S., Kang G., Kim J.S., Choi B.H., Koo S.-H. Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine, 2016, 48(3): e218 CrossRef
  62. Xing T., Xu X., Jiang N., Deng S. Effect of transportation and pre-slaughter water shower spray with resting on AMP-activated protein kinase, glycolysis and meat quality of broilers during summer. Animal Science Journal, 2016, 87(2): 299-307 CrossRef
  63. Zhang L., Wang X., Li J., Zhu X., Gao F., Zhou G. Creatine monohydrate enhances energy status and reduces glycolysis via inhibition of AMPK pathway in pectoralis major muscle of transport-stressed broilers. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6991-6999 CrossRef
  64. Feng J., Li J., Wu L., Yu Q., Ji J., Wu J., Dai W., Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 2020, 39: 126 CrossRef
  65. Halliday W., Ross J., Christie G., Jones R. Effect of transportation on blood metabolites in broilers. British Poultry Science, 1977, 18(6): 657-659 CrossRef
  66. Zhang C., Wang L., Zhao X.H., Chen X.Y., Yang L., Geng Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poultry Science, 2017, 96(7): 2219-2225 CrossRef
  67. Zheng A., Lin S., Pirzado S.A., Chen Z., Chang W., Cai H., Liu G. Stress associated with simulated transport, changes serum biochemistry, postmortem muscle metabolism, and meat quality of broilers. Animals, 2020, 10: 1442 CrossRef
  68. Nawaz A.H., Amoah K., Leng Q.Y., Zheng J.H., Zhang W.L., Zhang L. Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Frontiers in Veterinary Science, 2021, 8: 699081 CrossRef
  69. Beauclercq S., Nadal-Desbarats L., Hennequet-Antier C., Collin A., Tesseraud S., Bourin M., Bihan-Duval E.L., Berri C. Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. Journal of Proteome Research, 2016, 15(4): 1168-1178 CrossRef
  70. de Souza Langer R.O., Simões G.S., Soares A.L., Oba A., Rossa A., Shimokomaki M., Ida E.I. Broiler transportation conditions in a Brazilian commercial line and the occurrence of breast PSE (pale, soft, exudative) meat and DFD-like (dark, firm, dry) meat. Brazilian Archives of Biology and Technology, 2010, 53(5): 1161-1167 CrossRef
  71. Wilpe S.V., Koornstra R.H.N., Brok M.D., Groot J.W.D., Blank C., Vries J.M.D, Gerritsen W.R., Mehraet N. Lactate dehydrogenase: a marker of diminished antitumor immunity. OncoImmunology, 2020, 9(1): 1731942 CrossRef
  72. Zhang C., Geng Z.Y., Chen K.K., Zhao X., Wang C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poultry Science, 2019, 98(10): 4648-4655 CrossRef
  73. Gou Z., Abouelezz K.F.M., Fan Q., Li L., Lin X., Wang Y., Cui X., Ye J., Masoud M.A., Jiang S., Ma X. Physiological effects of transport duration on stress biomarkers and meat quality of medium-growing yellow broiler chickens. Animal, 2021, 15(2): 100079 CrossRef
  74. Zhang L., Yue H.Y., Wu S.G., Xu L., Zhang H.J., Yan H.J., Cao Y.L., Gong Y.S., Qi G.H. Transport stress in broilers. II. Superoxide production, adenosine phosphate concentrations, and mRNA levels of avian uncoupling protein, avian adenine nucleotide translocator, and avian peroxisome proliferator-activated receptor-gamma coactivator-1alpha in skeletal muscles. Poultry Science, 2010, 89(3): 393-400 CrossRef
  75. Archile-Contreras A.C., Purslow P.P. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International, 2011, 44(2): 582-588 CrossRef
  76. Wang X.F., Zhu X.D., Li Y.J., Liu Y., Li J.L., Gao F., Zhou G.H., Zhang L. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer. Poultry Science, 2015, 94(11): 2797-2804 CrossRef
  77. Mazur-Kuśnirek M., Antoszkiewicz Z., Lipiński K., Kaliniewicz J., Kotlarczyk S., Żukowski P. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. Archives of Animal Nutrition, 2019, 73(2): 111-126 CrossRef
  78. Koch R.E. Hill G. E. An assessment of techniques to manipulate oxidative stress in animals. Functional Ecology, 2016, 31(1): 9-21 CrossRef
  79. Abdelrahman R. E., Khalaf A.A.A., Elhady M.A., Ibrahim M.A., Hassanen E.I., Noshy P.A. Quercetin ameliorates ochratoxin A-Induced immunotoxicity in broiler chickens by modulation of PI3K/AKT pathway. Chemico-Biological Interactions, 2022, 351: 109720 CrossRef
  80. Sorrenti V., Giacomo C.D., Acquaviva R., Barbagallo I., Bognanno M., Galvano F. Toxicity of ochratoxin A and its modulation by antioxidants: a review. Toxins, 2013, 5(10): 1742-1766 CrossRef
  81. Hameed M.R., Khan M.Z., Saleemi M.K., Khan A., Akhtar M., Hassan Z.-ul-, Hussain Z. Study of ochratoxin A (OTA)-induced oxidative stress markers in broiler chicks. Toxin Reviews, 2017, 36(4): 270-274 CrossRef
  82. Tong C., Li P., Yu L.-H., Li L., Li K., Chen Y., Yang S.H., Long M. Selenium-rich yeast attenuates ochratoxin A-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-KB activation. Journal of Functional Foods, 2020, 66: 103784 CrossRef
  83. Al-Waeli A., Zoidis E., Pappas A., Demiris N., Zervas G., Fegeros K. The role of organic selenium in cadmium toxicity: effects on broiler performance and health status. Animal, 2013, 7(3): 386-393 CrossRef
  84. Xu F., Liu S., Li S. Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biological Trace Element Research, 2015, 165: 214-221 CrossRef
  85. Shaikh Z.A. Vu T.T., Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicology and Applied Pharmacology, 1999, 154(3): 256-263 CrossRef
  86. Zhao W., Liu W., Chen X., Zhu Y., Zhang Z., Yao H., Xu S. Four endoplasmic reticulum resident selenoproteins may be related to the protection of selenium against cadmium toxicity in chicken lymphocytes. Biological Trace Element Research, 2014, 161: 328-333 CrossRef
  87. Li J.-L., Jiang C.-Y., Li S., Xu S.-W. Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicology and Environmental Safety, 2013, 96: 103-109 CrossRef
  88. Gao J., Lin H., Wang X., Song Z., Jiao H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poultry Science, 2010, 89(2): 318-327 CrossRef
  89. Lin H., Decuypere E., Buyse J. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2004, 139(4): 737-744 CrossRef
  90. Chen X., Zhang L., Li J., Gao F., Zhou G. Hydrogen peroxide-induced change in meat quality of the breast muscle of broilers is mediated by ROS generation, apoptosis, and autophagy in the NF-κB signal pathway. Journal of Agricultural and Food Chemistry, 2017, 65(19): 3986-3994 CrossRef
  91. Rosenvold K., Andersen H.J. Factors of significance for pork quality — a review. Meat Science, 2003, 64(3): 219-237 CrossRef
  92. Gorlov I.F., Tikhonov S.L., Tikhonova N.V. Industriya pitaniya, 2016, 1: 44-53 (in Russ.).
  93. Madkour M., Salman F.M., El-Wardany I., Abdel-Fattah S.A., Alagawany M., Hashem N.M., Abdelnour S.A., El-Kholy M.S., Dhama K. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. Journal of Thermal Biology, 2022, 103: 103169 CrossRef
  94. Surai P.F. Selenium in poultry nutrition and health. Wageningen, The Netherlands, Wageningen Academic Publishers, 2018 CrossRef
  95. Nekrasov R.V., Bogolyubova N.V., Semenova A.A., Nasonova V.V., Polishchuk E.K. Voprosy pitaniya, 2021, 90, 1(533): 74-84 CrossRef (in Russ.).
  96. Nekrasov R.V., Bogolyubova N.V., Fomichev Yu.P., Chabaev M.G., Semenova A.A., Nasonova V.V. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktual’nye problemy innovatsionnogo razvitiya zhivotnovodstva» [Proc. Int. Conf. «Current chellenges of innovative development of animal husbandry»]. Bryansk, 2019: 369-373 (in Russ.).
  97. Semenova A., Kuznetsova T., Nasonova V., Nekrasov R., Bogolubova N. Effect of modelled stress and adaptogens on microstructural characteristics of pork from fast-growing hybrid animals. Potravinarstvo, 2020, 14(1): 656-663 CrossRef
  98. Semenova A.A., Kuznetsova T.G., Nasonova V.V., Nekrasov R.V., Bogolyubova N.V., Tsis E.Yu. Use of antioxidants as adaptogens fed to pigs (Sus scrofa domesticus Erxleben, 1777) (meta-analysis). Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2020, 55(6): 1107-1125 CrossRef
  99. Semenova A.A.,Nasonova V.V., Kuznetsova T.G., Tunieva E.K., Bogolyubova N.V., Nekrasov R.V. A study on the effect of dihydroquercetin added into a diet of growing pigs on meat quality. Journal of Animal Science, 2020, 98(S4): 364 CrossRef
  100. Semenova A.A., Nasonova V.V., Nekrasov R.V., Bogolyubova N.V., Mishurov A.V. Vse o myase, 2020, 5S: 318-320 CrossRef (in Russ.).
  101. Zhao W., Li, J., Xing T., Zhang L., Gao F. Effects of guanidinoacetic acid and complex antioxidant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. Journal of the Science of Food and Agriculture, 2021, 101(9): 3961-3968 CrossRef
  102. Abu Hafsa S.H., Ibrahim S.A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): 268-275 CrossRef
  103. Gouda A., Amer S.A., Gabr S., Tolba S.A. Effect of dietary supplemental ascorbic acid and folic acid on the growth performance, redox status, and immune status of broiler chickens under heat stress. Tropical Animal Health and Production, 2020, 52(6): 2987-2996 CrossRef
  104. Pardue S.L., Thaxton J.P. Ascorbic acid in poultry. A review. World’s Poultry Science Journal, 1986, 42(2): 107-123 CrossRef
  105. Herrera E., Barbas C. Vitamin E: action, metabolism and perspectives. Journal of Physiology and Biochemistry, 2001, 57: 43-56 CrossRef
  106. Ulatowski L., Manor D. Vitamin E trafficking in neurologic health and disease. Annual Review of Nutrition, 2013, 33: 87-103 CrossRef
  107. Khan R.U., Rahman Z.U., Nikousefat Z., Javdani M., Tufarelli V., Dario C., Selvaggi M., Laudadio V. Immunomodulating effects of vitamin E in broilers. World's Poultry Science Journal, 2012, 68(1): 31-40 CrossRef
  108. Klasing K.C., Korver D.R. Nutritional diseases. In: Diseases of poultry. V. 2. Wiley-Blackwell, 2020: 1257-1285.
  109. Niu Z.Y., Min Y.N., Liu F.Z. Dietary vitamin E improves meat quality and antioxidant capacity in broilers by upregulating the expression of antioxidant enzyme genes. Journal of Applied Animal Research, 2017, 46(1): 397-401 CrossRef
  110. Van Vleet J.V., Ferrans V.J. Ultrastructural changes in skeletal muscle of selenium-vitamin E-deficient chicks. American Journal of Veterinary Research, 1976, 37: 1081-1089.
  111. Awadin W.F., Eladl A.H., El-Shafei R.A., El-Adl M.A., Ali H.S. Immunological and pathological effects of vitamin E with Fetomune Plus® on chickens experimentally infected with avian influenza virus H9N2. Veterinary Microbiology, 2019, 231: 24-32 CrossRef
  112. Ibrahim H.A.-F., Aziz A. Alleviating transport stress of broiler using vitamin C and acetyl salicylic acid. Journal of Animal and Poultry Production, 2021, 12(5): 169-173 CrossRef
  113. Shakeri M., Oskoueian E., Le H.H., Shakeri M. Strategies to combat heat stress in broiler chickens: unveiling the roles of selenium, vitamin E and vitamin C. Veterinary Sciences, 2020, 7(2): 71 CrossRef
  114. Harrison F.E., May J.M. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radical Biology and Medicine, 2009, 46(6): 719-730 CrossRef
  115. Peeters E., Neyt A., Beckers F., De Smet S., Aubert A., Geers R. Influence of supplemental magnesium, tryptophan, vitamin C, and vitamin E on stress responses of pigs to vibration. Journal of Animal Science, 2005, 83(7): 1568-1580 CrossRef
  116. Sorice A., Guerriero E., Capone F., Colonna G., Castello G., Costantini, S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini-Reviews in Medicinal Chemistry, 2014, 14(5): 444-452 CrossRef
  117. Ahmadu S., Mohammed A.A., Buhari H., Auwal A. An overview of vitamin C as an antistress in poultry. Malaysian Journal of Veterinary research, 2016; 7(2): 9-22.
  118. Wei J., Lei G.-h., Fu L., Zeng C., Yang T., Peng S.-f. Association between dietary vitamin C intake and non-alcoholic fatty liver disease: a cross-sectional study among middle-aged and older adults. PLoS ONE, 2016, 11(1): 11e0147985 CrossRef
  119. Mahmoud K.Z., Edens F.W., Eisen E.J., Havenstein G.B. Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2003, 136(4): 329-335 CrossRef
  120. Whitehead C.C., Keller T. An update on ascorbic acid in poultry. World's Poultry Science Journal, 2003, 59(2): 161-184 CrossRef
  121. Rafiee F., Mazhari M., Ghoreishi M., Esmaeilipour O. Effect of lemon verbena powder and vitamin C on performance and immunity of heat-stressed broilers. Journal of animal physiology and animal nutrition, 2016, 100(5): 807-812 CrossRef
  122. Rudakov O.B., Rudakova L.V. Myasnye tekhnologii, 2020, 5: 44-47 CrossRef (in Russ.).
  123. Dueñas M., González-Manzano S., González-Paramás A., Santos-Buelga C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51: 443-449 CrossRef
  124. Li Y., Yao J., Han C., Yang J., Chaudhry M., Wang S., Liu H., Yin Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3): 167 CrossRef
  125. Wang S., Yao J., Zhou B., Yang J., Chaudry M.T., Wang M., Xiao F., Li Y., Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 2018, 81(1): 68-78 CrossRef
  126. Lesjak M., Beara I., Simin N., Pintać D., Majkić T., Bekvalac K., Orčić D., Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods, 2018, 40: 68-75 CrossRef
  127. Hong Z., Piao M. Effect of quercetin Monoglycosides on oxidative stress and gut microbiota diversity in mice with dextran sodium Sulphate-induced colitis. BioMed Research International, 2018, 2018: 8343052 CrossRef
  128. Saeed M., Naveed M., Arain M., Arif M., Abd El-Hack M.E., Alagawany M, Sun C. Quercetin: nutritional and beneficial effects in poultry. World's Poultry Science Journal, 2017, 73(2): 355-364 CrossRef
  129. Abdel-Latif M.A., Elbestawy A.R., El-Far A.H., Noreldin A.E., Emam M., Baty R.S., Albadrani G.M., Abdel-Daim M.M., El-Hamid H.S.A. Quercetin dietary supplementation advances growth performance, gut microbiota, and intestinal mRNA expression genes in broiler chickens. Animals, 2021, 11(8): 2302 CrossRef
  130. Koudoufio M., Desjardins Y., Feldman F. Spahis S., Delvin E., Levy E. Insight into polyphenol and gut microbiota crosstalk: are their metabolites the key to understand protective effects against metabolic disorders? Antioxidants, 2020, 9(10): 982 CrossRef
  131. Fomichev Yu.P., Nikanova L.A., Lashin S.A. Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta, 2018, 3: 21-32 (in Russ.).
  132. Fomichev Yu.P. Еffektivnoe zhivotnovodstvo, 2018, 4(143): 58-60 (in Russ.).
  133. Nikanova L.A. Zootekhniya, 2020, 6: 12-15 (in Russ.).
  134. Nikanova L.A. Rossiyskiy zhurnal Problemy veterinarnoy sanitarii, gigieny i еkologii, 2020, 1(33): 85-91 CrossRef (in Russ.).
  135. Jang I.-S., Ko Y.-H., Moon Y.-S., Sohn S.-H. Effects of vitamin C or E on the pro-inflammatory cytokines, heat shock protein 70 and antioxidant status in broiler chicks under summer conditions. Asian-Australas. Journal of Animal Science, 2014, 27(5): 749-756 CrossRef
  136. Asensio X., Abdelli N., Piedrafita J., Soler M.D., Barroeta A.C. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 2020, 99(5): 2633-2644 CrossRef
  137. Kutlu H.R., Forbes J.M. Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livestock Production Science, 1993, 36(4): 335-350 CrossRef
  138. Lohakare J.D., Ryu M.H., Hahn T.-W., Lee J.K., Chae B.J. Effects of supplemental ascorbic acid on the performance and immunity of commercial broilers. Journal of Applied Poultry Research, 2005, 14: 10-19 CrossRef
  139. Attia Y.A., Abd El-Hamid A.EH.E, Abedalla A.A., Berika M.A., Al-Harthi M.A., Kucuk O., Sahin K., Abou-Shehema B.M. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus, 2016, 5(1): 1619 CrossRef
  140. Nematollahi F., Shomali T., Abdi-Hachesoo B., Khodakaram-Tafti A. Effect of prophylactic vitamin C administration on the efficiency of florfenicol or sulfadiazine-trimethoprim antimicrobial therapy in chickens with staphylococcal arthritis. Tropical Animal Health and Production, 2022, 54: 25 CrossRef
  141. Zangeneh S., Torki M., Lotfollahian H., Abdolmohammadi A. Effects of dietary supplemental lysophospholipids and vitamin C on performance, antioxidant enzymes, lipid peroxidation, thyroid hormones and serum metabolites of broiler chickens reared under thermoneutral and high ambient temperature. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1521-1532 CrossRef
  142. Yiğit A.A., Yarim G. Effects of increases in vitamin C supplementation in the laying hen rations on serum concentrations of vitamin C and vitamin A. Proc. 1th Int. Eurasian Conf. on biological and chemical sciences «EurasianBioChem 2018». Ankara, 2018: 1256.
  143. Cilev G., Crnec I., Sefer D., Markovic R., Kochoski L., Stojanovski S., Pacinovski N. The influence of vitamin C over the production performances of the laying hens in conditions of thermal stress. Zhivotnovadni Nauki, 2020, 57(1): 29-35.
  144. Ružić Z., Kanački Z., Milošević V., Zekic-Stošić M., Savić S., Popovska-Percinic F., Pendovski L., Paraš S. The effect of vitamin C on specific hematologic parameters in broilers during heat stress. Proc. 5th Int. Vet-Istanbul Group Congress and 8th Int. Scien. Meeting “Days of veterinary medicine 2018”. Scopie, 2018.
  145. Mishra A., Patel P., Jain A., Shakkarpude J., Sheikh A.A. Effect of ascorbic acid supplementation on corticosterone levels and production parameters of white leghorn exposed to heat stress. International Journal of Chemical Studies, 2019, 7(6): 930-934.
  146. Abudabos M.A., Al-Owaimer A.N., Hussein E.O.S., Ali M.H., Al-Ghadi M.Q. Effect of natural ascorbic acid on performance and certain haemato-biochemical values in layers exposed to heat stress. Journal of Animal and Plant Sciences, 2018, 28(2): 441-448.
  147. Abdalla A.M., Erneo B.O. Effect of ascorbic acid supplementation methods on some productive and physiological performances of laying hens. International Journal of Research Studies in Biosciences, 2018, 6(1): 10-15 CrossRef
  148. Jain G., Neeraj, Pandey R. Effect of vitamin C on growth performance of caged broilers. Advances in Bioresearch, 2018, 9(2): 178-181.
  149. Singh R., Mandal A.B. Efficacy of vitamin C in ameliorating ochratoxicosis in broiler chicken. Indian Journal of Animal Nutrition, 2018, 35(4): 436-443 CrossRef
  150. Alshelmani M.I., Salem N.A., Salim A.A., Sakal I. Effect of dietary vitamin C and corn oil supplementation on broiler performance under heat stress. International Journal of Current Microbiology and Applied Sciences, 2020, 9(4): 225-230 CrossRef
  151. Hatab M. Effect of saccharomyces cerevisiae and vitamin c supplementation on performance of broilers subjected to ochratoxin a contamination. Egyptian Poultry Science Journal, 2021, 30(I): 89-113 CrossRef
  152. Saiz del Barrio A., Mansilla W.D., Navarro-Villa A., Mica J.H., Smeets J.H., Hartog L.A., García-Ruiz A.I. Effect of mineral and vitamin C mix on growth performance and blood corticosterone concentrations in heat-stressed broilers. Journal of Applied Poultry Research, 2020, 29(1): 23-33 CrossRef
  153. Hashem M.A., Abd El Hamied S.S., Ahmed E.M.A., Amer S.A., Hassan A.M. Alleviating effects of vitamins C and E supplementation on oxidative stress, hematobiochemical, and histopathological alterations caused by copper toxicity in broiler chickens. Animals, 2021, 11(6): 1739 CrossRef
  154. Kholis N., Suryadi U., Roni F. Pengaruh suplementasi vitamin C dan jarak transportasi terhadap penyusutan bobot badan broiler. Jurnal Ilmu Peternakan Terapan, 2018, 2(1): 27-33 CrossRef
  155. Vieira V., Marx F.O., Bassi L.S., Santos M.C., Oba A., Oliveira S.G., Maiorka A. Effect of age and different doses of dietary vitamin E on breast meat qualitative characteristics of finishing broilers. Animal Nutrition, 2021, 7(1): 163-167 CrossRef
  156. Kaiser M.G., Block S.S., Ciraci C., Fang W., Sifri M., Lamont S.J. Effects of dietary vitamin E type and level on lipopolysaccharide-induced cytokine mRNA expression in broiler chicks. Poultry Science, 2012, 91(8): 1893-1898 CrossRef
  157. Pitargue F.M., Kim J.H., Goo D., Delos Reyes J.B., Kil D.Y. Effect of vitamin E sources and inclusion levels in diets on growth performance, meat quality, alpha-tocopherol retention, and intestinal inflammatory cytokine expression in broiler chickens. Poultry Science, 2019, 98(10): 4584-4594 CrossRef
  158. Ding X.M., Mu Y.D., Zhang K.Y., Wang J.P., Bai S.P., Zeng Q.F., Peng H.W. Vitamin E improves antioxidant status but not lipid metabolism in laying hens fed a aged corn-containing diet. Animal Bioscience, 2021, 34(2): 276-284 CrossRef
  159. Mazur-Kuśnirek M., Antoszkiewicz Z., Lipiński K., Kaliniewicz J., Kotlarczyk S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Archives Animal Breeding, 2019, 62(1): 287-296 CrossRef
  160. Yang J., Ding X.M., Bai S.P., Wang J.P., Zeng Q.F., Peng H.W., Xuan Y., Su Z.W., Zhang K.Y. Effects of dietary vitamin E supplementation on laying performance, hatchability, and antioxidant status in molted broiler breeder hens. Journal of Applied Poultry Research, 2021, 30(3): 100184 CrossRef
  161. Livingston M.L., Pokoo-Aikins A., Frost T., Laprade L., Hoang V., Nogal B., Phillips C., Cowieson A.J. Effect of heat stress, dietary electrolytes, and vitamins E and C on growth performance and blood biochemistry of the broiler chicken. Frontiers in Animal Science, 2022, 3: 807267 CrossRef
  162. Moustafa K.-E.M.El., Mikhail W.Z.A., Elsherif H.M.R., El-tybe M.A. Effect of nano-selenium and vitamin E on growth performance and blood constituents of broiler chickens. Turkish Online Journal of Qualitative Inquiry, 2021, 7(4): 468-479.
  163. Gomes P.E.B., Lopes J.B., da Silva Costa Moreira E.M., Merval R.R., Moreira Filho M.A., de Lemos J.G.S. Organic zinc and vitamin E supplementation for broiler chickens under natural heat stress conditions. Acta Veterinaria Brasilica, 2020, 14(4): 237-243 CrossRef
  164. Gul S., Khan R., Kashif M., Ahmad M., Hussain R., Khan A. Amelioration of toxicopathological effects of thiamethoxam in broiler birds with vitamin E and selenium. Toxin Reviews, 2022, 41(1): 218-228 CrossRef
  165. Leskovec J., Levart A, Perić L., Đukić Stojčić M., Tomović V., Pirman T., Salobir J., Rezar V. Antioxidative effects of supplementing linseed oil-enriched diets with a-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poultry Science, 2019, 98(12): 6733-6741 CrossRef
  166. Romero C., Nardoia M., Arija I., Viveros A., Ana I.R., Prodanov M., Chamorro S. Feeding broiler chickens with grape seed and skin meals to enhance a- and γ-tocopherol content and meat oxidative stability. Antioxidants, 2021, 10(5): 699 CrossRef
  167. Wang J., Clark D.L., Jacobi S.K., Velleman S.G. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poultry Science, 2020, 99(4): 2108-2119 CrossRef
  168. Perez D.M., Richards M.P., Parker R.S., Berres M.E., Wright A.T., Sifri M., Sadler N.C., Tatiyaborworntham N., Li N. Role of cytochrome p450 hydroxylase in the decreased accumulation of vitamin E in muscle from Turkeys compared to that from chickens. Journal of Agricultural and Food Chemistry, 2016, 64(3): 671-680 CrossRef
  169. Karadas F., Erdoğan S., Kor D., Oto G., Uluman M. The effects of different types of antioxidants (Se, vitamin E and carotenoids) in broiler diets on the growth performance, skin pigmentation and liver and plasma antioxidant concentrations. Revista Brasileira de Ciência Avi̧cola, 2016, 18(1): 101-116 CrossRef
  170. Zdanowska-Sasiadek Z., Michalczuk M., Damaziak K., Niemiec J., Poławska E., Gozdowski D., Rozanska E. Effect of vitamin E supplementation on growth performance and chicken meat quality. European Poultry Science, 2016, 80: 1-14 CrossRef
  171. Goliomytis M., Tsoureki D., Simitzis P.E., Charismiadou M.A., Hager-Theodorides A.L., Deligeorgis S.G. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability. Poultry Science, 2014, 93(8): 1957-1962 CrossRef
  172. Pirgozliev V., Westbrook C., Woods S., Karagecili M.R., Karadas F., Rose S.P., Mansbridge S.C. 2019 Feeding dihydroquercetin to broiler chickens. British Poultry Science, 2019, 60(3): 241-245 CrossRef
  173. Torshkov A.A., Gerasimenko V.V. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2010, 2(26): 167-169 (in Russ.).
  174. Fomichev Y., Nikanova L., Lashin A. The effectiveness of using dihydroquercetin (taxifolin) in animal husbandry, poultry and apiculture for prevention of metabolic disorders, higher antioxidative capacity, better resistence and realisation of a productive potential of organism. Journal of International Scientific Publications, 2016, 4: 140-159.
  175. Omarov M.O., Slesareva O.A., Osmanova S.O., Abilov B.T. V sbornike: Sbornik nauchnykh trudov Krasnodarskogo nauchnogo tsentra po zootekhnii i veterinarii [In: Collection of scientific papers of the Krasnodar Scientific Center for Animal Science and Veterinary Medicine]. Krasnodar, 2019, 8(1): 85-90 CrossRef (in Russ.).
  176. Omarov M.O., Slesareva O.A., Osmanova S.O. V sbornike: Sbornik nauchnykh trudov Severo-Kavkazskogo nauchno-issledovatel’skogo instituta zhivotnovodstva [In: Collection of scientific papers of the North Caucasian Research Institute of Animal Husbandry]. Krasnodar, 2016, 5(2): 101-106. (in Russ.)
  177. Parmar A., Patel V., Usadadia S., Chaudhary L., Prajapati D., Londhe A. Influence of dietary inclusion of oil and quercetin supplementation on carcass characters and meat. Quality attributes of broiler chickens. International Journal of Livestock Research, 2019, 9(9): 93-103 CrossRef
  178. Kuz’mina N.N., Petrov O.Yu. Vestnik Mariyskogo gosudarstvennogo universiteta, 2020, 6(1): 24-32 CrossRef (in Russ.).
  179. Kuz’mina N.N., Petrov O.Yu., Smolentsev S.Yu. Veterinarnyy vrach, 2020, 2: 14-20 CrossRef (in Russ.).
  180. Kuzmina N.N., Petrov O.Yu., Semenov V.G., Boronin V.V. Effect of preparation Dihydroquercetin on growth-weight indices of broilers. IOP Conference Series: Earth and Environmental Science, 2021, 935: 012016 CrossRef
  181. Pirgozliev V., Mansbridge S.C., Whiting I.M., Arthur C., Rose S.P., Atanasov A.G. Antioxidant status and growth performance of broiler chickens fed diets containing graded levels of supplementary dihydroquercetin. Research in Veterinary Science, 2021, 141: 63-65 CrossRef
  182. Yang J.X., Maria T.C., Zhou B., Xiao F., Wang M., Mao Y., Li Y. Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway. Poultry Science, 2020, 99(2): 906-913 CrossRef
  183. Sun L., Xu G., Dong Y., Li M., Yang L., Lu W. Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway. Molecules, 2022, 25(5): 1053 CrossRef
  184. Dong Y., Lei J., Zhang B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poultry Science, 2020, 99(10): 4892-4903 CrossRef
  185. Ying L., Chaudhry M.T., Xiao F., Mao Y., Wang M., Wang B., Wang S., Li Y. The effects and mechanism of quercetin dietary supplementation in streptozotocin-induced hyperglycemic arbor acre broilers. Oxidative Medicine and Cellular Longevity, 2020, 2020: 9585047 CrossRef
  186. Zhang S., Kim I.H. Effect of quercetin (flavonoid) supplementation on growth performance, meat stability, and immunological response in broiler chickens. Livestock Science, 2020, 242: 104286 CrossRef
  187. Khalaf S.A., Mousa B.H. Effect of individual and combining of adding quercetin and vitamin E to diets in productive traits of broiler chickens. Annals of the Romanian Society for Cell Biology, 2021, 25(4): 2485-2496.
  188. Dang X., Wang H., Seok W.J., Ha J.H., Kim I.H. Quercetin extracted from Sophora japonica flower improves growth performance, nutrient digestibility, cecal microbiota, organ indexes, and breast quality in broiler chicks. Animal Bioscience, 2022, 35(4): 577-586 CrossRef
  189. Wang M., Wang B., Wang S., Lu H., Wu H., Ding M., Ying L., Mao Y., Li Y. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers. Frontiers in Cell and Developmental Biology, 2021, 9: 616219 CrossRef
  190. Abid A.R., Areaaer A.H., Hussein M.A., Gatea S.M., Al-Nuaimi A.J. Impact of different levels of quercetin on productive performance of broiler Chicken(Ross-308). AIP Conference Proceedings, 2020, 2290(1): 020046 CrossRef
  191. ul Abidin Z., Khatoon A. Improving performance traits of laying hens with vitamin C. In: Egg Innovations and Strategies for Improvements /Hester P.Y. Academic Press, 2017: 297-308 CrossRef
  192. Chen X., Liang D., Huang Z., Jia G., Zhao H., Liu G. Quercetin regulates skeletal muscle fiber type switching via adiponectin signaling. Food & Function, 2021, 12(6): 2693-2702 CrossRef
  193. Kanner J. Polyphenols by generating H2O2, affect cell redox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: in vitro, in vivo and human health. Antioxidants, 2020, 9(9): 1-20 CrossRef
  194. Shao Y., Yu H., Yang Y., Li M., Hang L., Xu X. A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry age-related macular degeneration. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1479571 CrossRef
  195. Fuentes J., Atala E., Pastene E., Carrasco-Pozo C., Speisky H. Quercetin oxidation paradoxically enhances its antioxidant and cytoprotective properties. Journal of Agricultural and Food Chemistry, 2017, 65(50): 11002-11010 CrossRef
  196. Nna V.U., Usman U.Z., Ofutet E.O., Owu D.U. Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride - induced oxidative stress in the uterus and ovaries of female Wistar rats. Food and Chemical Toxicology, 2017, 102: 143-155 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)