PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.4.651eng

UDC: 636.592:575.174:577.21

 

GENETIC DIFFERENTIATION OF TURKEY BREEDS WITH MICROSATELLITE MARKERS

V.I. Fisinin1, M.I. Selionova2 , D.A. Kovalev3, L.A. Shinkarenko4

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail fisinin@land.ru
2Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail m_selin@mail.ru (✉ corresponding author);
3Stavropol Anti-Plague Institute of Rospotrebnadzor, 13-15, ul. Sovetskaya, Stavropol, 355005 Russia, e-mail kovalev_da.stv@list.ru;
4North Caucasian Zonal Experimental Station for Poultry Breeding Branch of the Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, s. Obil’noe, Georgievskii District, Stavropol Krai, 357812 Russia, e-mail skzospzooteh@yandex.ru

ORCID:
Fisinin V.I. orcid.org/0000-0003-0081-6336
Kovalev D.A. orcid.org/0000-0002-9366-5647
Selionova M.I. orcid.org/0000-0002-9501-8080
Shinkarenko L.A. orcid.org/0000-0003-4959-5415

Received April 26, 2021

 

One of the trends of modern industrial agriculture is the reduction of breed genetic recourses in farm animals and poultry. Current programs on maintenance of farm animals breeds are giving great attention to the genetic studies, including the use of microsatellite loci. The microsatellite analysis is one of the informative and accessible methods. During the implementation of the Global Project for the Measurement of Domestic Animal Genetic Diversity (MoDAD), 50 populations of different poultry species were studied using microsatellite markers. The works on biodiversity in turkeys initially involved chicken microsatellite loci (Gallus gallus), then informative loci were established for the genome of turkeys (Meleagris gallopavo). Data on genetic profiles, similarities, differences, and interbreed differentiation of turkeys breeds bred in the USA, Italy, Hungary and other countries have been accumulated. In the present work, the genetic relationship between the Russian turkey breeds and the turkey gene pool population of the University of Minnesota based on microsatellite markers was established for the first time. The obtained data indicate that the genetic distances between breeds is largely determined by their origin, breeding range, and the contribution of the gene pool of some breeds in creating and improving the productive qualities of other breeds. Our purpose was to study genetic diversity and interbreeding differentiation of turkeys of Russian and foreign breeding using microsatellite loci. The research was performed at the North Caucasus zonal experimental station for poultry farming in 2019. Blood samples were taken from 30 individuals of each of seven turkey breeds (Meleagris gallopavo) of the Russian selection (Belaya shirokogrudaya, BSH; Bronzovaya Severokavkazskaya, BrSK; Belaya Severokavkazskaya, BeSK; Serebristaya Severokavkazskaya, SSK; Moscowskaya Belaya, MB; Chernaya Tikhoretskaya, CHT; Uzbekskaya palevaya, UP). DNA was isolated according to the protocol for the commercial AmpliPrime DNA-sorb-B kit (InterLabService, Russia). The amount and quality of isolated DNA were assayed using a standard spectrophotometric method (a NanoDrop 2000 spectrophotometer, Thermo Scientific, USA). Genotyping was performed for 12 microsatelliteloci (MNT9-MNT20). The described genotypes of turkeys gene pool farm (AM) (Nicholas Turkey Breeding Farms) of the University of Minnesota were used for comparison with the genotypes of turkeys of Russian breeds. The average number and number of effective alleles per locus (Na, Ne), the degree of observed and expected heterozygosity (No, Ne), and Shannon index (I) were determined. The genetic structure of populations was assessed based on the FST values and genetic distances according to M. Nei. The Neighbor Joining Method was used to construct the phylogenetic tree. It was shown that low genetic diversity is characteristic of both Russian breeds of turkeys and the AM population. The number of identified alleles in the microsatellite loci as a whole in the breed sample varied from 1 to 4, the average number of alleles per locus ranged from 1.0 to 1.83. The least genetic difference occurred between the MB and BSH breeds. The BeSK, SSK, and BrSK breeds formed a separate node, with BrSK exhibiting the greatest genetic distance, forming the largest branch by genetic distance. Separate branches at relatively equal distances formed the breeds CHT, UP, and AM population. Thus, our findings confirm an insignificant genetic diversity of the gene pool of the studied Russian turkeys’ breeds and populations as compared to the gene pool of other species of farm animals.

Keywords: turkey breeds, microsatellites, phylogenetic analysis, genetic diversity.

 

REFERENCES

  1. Stolpovskii Yu.A., Zakharov-Gezekhus I.A. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(4): 477-486 CrossRef (in Russ.).
  2. Jarne P., Lagoda P.J.L. Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution, 1996, 11(10): 424-429 CrossRef
  3. Gholizadeh M., Mianji G.R. Use of microsatellite markers in poultry research. International Journal of Poultry Science, 2007, 6(2): 145-153 CrossRef
  4. Putman A.I., Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology Evolution, 2014, 4(22): 4399-4428 CrossRef
  5. Tan C., Bian C., Yang D., Li N., Wu Z.-F., Hu X.-X. Application of genomic selection in farm animal breeding. Yi Chuan, 2017, 39(11): 1033-1045 CrossRef
  6. Weigend S., Romanov M.N. The world watch list for domestic animal diversity in the context of conservation and utilisation of poultry biodiversity. World's Poultry Science Journal, 2002, 58(4): 411-430 CrossRef
  7. Groeneveld L.F., Lenstra J.A., Eding H., Toro M. A., Scherf B., Pilling D., Negrini R., Finlay E.K., Jianlin H., Groeneveld E., Weigend S., the GLOBALDIV Consortium. Genetic diversity in farm animals — a review. Animal Genetics, 2010, 41(s1): 6-31 CrossRef
  8. Soller M., Weigend S., Romanov M.N., Dekkers J.C.M., Lamont S.J. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science, 2006, 85(12): 2061-2078 CrossRef
  9. Wilkinson S., Wiener P., Teverson D., C.S.Haley, Hjcking P.M. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Animal Genetics, 2012, 43(5): 552-563 CrossRef
  10. Reed K.M., Mendoza K.M., Beattie C.W. Comparative analysis of microsatellite loci in chicken and turkey. Genome, 2000, 43(5): 796-802.
  11. Colombo E., Strillacci G., Cozzi M.C., Madeddu M., Mangiagalli M.G., Mosca F., Zaniboni L., Bagnato A., Cerolini S. Feasibility study on the FAO chicken microsatellite panel to assess genetic variability in the turkey (Meleagris gallopavo). Italian Journal of Animal Science, 2014, 13(4): 887-890 CrossRef
  12. Novgorodova I.P., Gladyr' E.A., Fisinin V.I., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK,2015, 29(11): 88-90 (in Russ.).
  13. Novgorodova I.P., Volkova V.V., Gladyr' E.A., Selionova M.I., Rastovarov E.I., Fisinin V.I., Zinov'eva N.A. Dostizheniya nauki i tekhniki APK,2011, 10: 66-67 (in Russ.).
  14. Reed K.M., Chaves L.D., Garbe J.R., Da Y., Harry D.E. Allelic variation and genetic linkage of avian microsatellites in a new turkey population for genetic mapping. Cytogenetic and Genome Research, 2003, 102(1-4): 331-339 CrossRef
  15. Reed K.M., Chaves L.D., Knutson T.P., Krueth S.B., Ashwell C.M., Burt D.W. Integration of microsatellite — based genetic maps for the turkey (Meleagris gallopavo). Genome, 2006, 49(10): 1308-1318 CrossRef
  16. Smith E.J., Geng T., Long E., Pierson F.W., Sponenberg D.P., Larson C., Gogal R. Molecular analysis of the relatedness of five domesticated turkey strains. Biochemical Genetics, 2005, 43(1-2): 35-47 CrossRef
  17. Fisinin V.I., Selionova M.I., Shinkarenko L.A., Shcherbatova N.G., Kononova L.V. Study of microsatellites in the Russian breeds of turkey. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(4): 739-748 CrossRef
  18. Reed K.M., Chaves L.D., Rowe J.A. Twelve new turkey microsatellite loci. Poultry Science, 2002, 81(12): 1789-1791 CrossRef
  19. Reed K.M., Roberts M.C., Murtaugh J., Beattie C.W., Alexander L.J. Eight new dinucleotide loci in turkey (Meleagris gallopavo). Animal Genetics, 2000, 31(2): 140-157 CrossRef
  20. Peakall R., Smouse P.E. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update. Bioinformatics, 2012, 28(19): 2537-2539 CrossRef
  21. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  22. Nei M. Genetic distance between populations. American Naturalist, 1972, 106: 283-392.
  23. Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164(4): 1567-1587.
  24. Latch E.K., Smith E.J., Rhodes O.E. Isolation and characterization of microsatellite loci in wild and domestic turkeys (Meleagris gallopavo). Molecular Ecology Note, 2002, 2(2): 176-178 CrossRef
  25. Kusza S., Mihók S., Czeglédi L., Javor A., Arnyasi M. Testing the breeding strategy of Hungarian Bronze turkey strains for maintaining genetic diversity with microsatellites. Arch. Anim. Breed., 2011, 54(4): 419-429 CrossRef
  26. Shinkarenko L.A., Terletskii V.P., Tyshchenko V.I. Ptitsevodstvo, 2020, 9: 17-21 CrossRef (in Russ.).
  27. Kamara D., Gyenai K.B., Geng T., Hammade H. Microsatellite marker-based genetic analysis of relatedness between commercial and heritage turkeys (Meleagris gallopavo). Poultry Science, 2007, 86(1): 46-49 CrossRef
  28. Knutson T.P., Chaves L.D., Hall M.K., Reed K.M. One hundred fifty-four genetic markers for the turkey (Meleagris gallopavo). Genome, 2004, 47(6): 1015-1028 CrossRef
  29. Mock K.E., Theimer T.C., Rhodes O.E., Greenberg D.L., Keim P. Genetic variation across the historical range of the wild turkey (Meleagris gallopavo). Molecular Ecology, 2002, 11(4): 643-657 CrossRef
  30. Aslam M.L., Bastiaansen J.W.M., Elferink M.G, Megens H.J., Crooijmans R.P.M.A., Blomberg L.A., Fleischer R.C., Tassell C.P., Sonstegard T.S., Schroeder C.G., Groenen M.A.M, Long J.A. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo). BMC Genomics, 2012, 13: 391-404 CrossRef
  31. Flicek P., Amode M.R., Barrell D., Beal K., Brent S., Carvalho-Silva D., Clapham P., Coates G., Fairley S., Fitzgerald S., Gil L., Gordon L., Hendrix M., Hourlier T., Johnson N., Kähäri A. K., Keefe D., Keenan S., Kinsella R., Komorowska M., Koscielny G., Kulesha E., Larsson P., Longden I., McLaren W., Muffato M., Overduin M.M.B., Pignatelli M., Pritchard B., Riat H.S., Ritchie G., Ruffier M., Schuster M.R.B., Sobral D., Tang A., Taylor T., Trevanion S., Vandrovcova J., White S.J., Wilson M., Wilder S.P., Aken B.L., Birney E., Cunningham F., Dunham I., Durbin R., Fernandez-Suarez X., Harrow J., Herrero J., Hubbard T., Parker A., Proctor G., Spudich G., Vogel J., Yates A., Zadissa A., Searle S. Ensembl 2012. Nucleic Acids Research. 2012, 40(D1): D84-D90 CrossRef
  32. Dalloul R. A., Long J.A., Zimin A.V., Aslam L., Beal K., Blomberg L. A., Bouffard P., Burt D.W., Crasta O., Crooijmans R.P.M.A., Cooper K., Coulombe R.A., De S., Delany M.E., Dodgson J.B., Dong J.J., Evans C., Frederickson K.M., Flicek P., Florea L., Folkerts O., Groenen M.A.M., Harkins T., Herrero J., Hoffmann S., Megens H.-J., Jiang A., Jong P., Kaiser P., Kim H., Kim K-W., Kim S., Langenberger D., Lee M-K., Lee T., Mane S., Marcais G., Marz M., McElroy A., Modise T., Nefedov M., Notredame C., Paton I.R., Payne W.S., Pertea G., Prickett D., Puiu D., Qioa D., Raineri E., Ruffier M., Salzberg S.L., Schatz M.C., Scheuring C., Schmidt C.J., Schroeder S., Searle S.M.J., Smith E.J., Smith J., Sonstegard T.S., Stadler P.F., Tafer H., Tu Z.J., Tassell C.P., Vilella A.J., Williams K.P., Yorke J.A., Zhang L., Zhang H.-B., Zhang X., Zhang Y., Reed K.M. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 8(9): e1000475 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)