PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.4.671eng

UDC: 636.1:579.6:577.2

 

RESULTS OF THE RESEARCH OF INTESTINAL MICROBIAL PROFILES OF Equus ferus caballus BY NGS SEQUENCING

E.I. Alekseeva1, A.V. Dubrovin2, G.Yu. Laptev2, E.A. Yildirim2, L.A. Ilyina2, E.A. Brazhnik2, V.A. Filippova2, N.I. Novikova2, D.G. Tyurina2, T.P. Dunyashev2, N.V. Tarlavin2

1Saint Petersburg State Agrarian University, 2, lit A, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail alekseevaei@list.ru;
2JSC «Biotrof+», 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail ,dubrovin@biotrof.ru, laptev@biotrof.ru, deniz@biotrof.ru(corresponding author ✉), ilina@biotrof.ru, bea@biotrof.ru, dumova@biotrof.ru, novikova@biotrof.ru,
tiurina@biotrof.ru,timur@biotrof.ru, tarlav1995@biotrof.ru

ORCID:
Alekseeva E.I. orcid.org/0000-0002-7119-5103
Filippova V.A. orcid.org/0000-0001-8789-9837
Dubrovin A.V. orcid.org/0000-0001-8424-4114
Novikova N.I. orcid.org/0000-0002-9647-4184
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Tyurina D.G. orcid.org/0000-0001-9001-2432
Yildirim E.A. orcid.org/0000-0002-5846-4844
Dunyashev T.P. orcid.org/0000-0002-3918-0948
Ilyina L.A. orcid.org/0000-0003-2490-6942
Tarlavin N.V. orcid.org/0000-0002-6474-9171
Brazhnik E.A. orcid.org/0000-0003-2178-9330

Received June 9, 2020

 

The symbiotic microbiome of the gastrointestinal tract of animals plays a vital role in the digestion and assimilation of feed nutrients, the development of immunity, disease resistance, and the breakdown of toxins. Significant amounts of starch are introduced into the diet of horses specialized for riding, in some cases (for example, before participating in exhibitions). This can lead to serious dysbiotic disorders of the microbiome. Disorders of the microbial community of the intestine can adversely affect animal health that become the cause of metabolic disorders, such as acidosis, a decrease in the digestibility of diet components, primarily fiber, hoof diseases, etc. The digestive system of Equus ferus caballus has a number of unique features compared to other mammals. In this work, for the first time in Russia, the diversity of the equine intestinal microbiome composition was demonstrated using the 16S metagenomics method. The study aimed to evaluate the microbiomes of the contents of the rectum of horses of different ages, physiological status, diets, sexes and breeds using NGS sequencing. The experiment was carried out in the summer 2017 in the Malanichev Farm (Grishkino settlement, Leningrad Province, Tosnensky District,) with horses (Equus ferus caballus) specialized for riding and hippodrome trials. Samples of 10-50 g (in triplicate) were taken from the rectum of three stallions of the Hanoverian breed (3 years old), a mare (6 years old) and a stallion (7 years old) of the Trakehner breed. Five days before sampling, the mare was foaled. The diets of stallions and mares were different. The stallions’ diet included grass (20 kg), hay (9 kg), carrots (1 kg), oats (3 kg), table salt (29 g). The mares’ diet consisted of grass (26 kg), carrots (1 kg), rolled oats (2.5 kg), table salt (27 g). Total DNA from the samples was extracted using Genomic DNA Purification Kit (Fermentas Inc., Lithuania). Amplification for subsequent NGS sequencing was carried out on a Verity DNA amplifier (Life Technologies, Inc., USA) using eubacterial primers (IDT) 343F 343F (5′-CTCCTACGGRRSGCAGCAG-3′) and 806R (5′-GGACTACNVGGGTWTCTAAT-3′) flanking the V1V3 region of the 16S rRNA gene. Metagenomic sequencing was performed on a MiSeq instrument (Illumina, Inc., USA). The taxonomic affiliation of microorganisms to genus was determined using the RDP Classifier program (https://rdp.cme.msu.edu/classifier/classifier.jsp). In five different studied individuals of E. ferus caballus, fairly similar microbiomes of intestinal profiles were revealed, regardless of the type of nutrition, physiological status, age, gender, and breed. High values of the Shannon and Simpson diversity indices testified to the species richness and biodiversity of the intestinal contents of horses. In the rectum, 25 phyla of microorganisms were found. The dominant phyla were Firmicutes (ranged from 32±1.9 to 40±3.8 %) and Bacteroidetes (from 34±2.1 to 40±4.7 %). It is important to emphasize that we revealed in the microflora a significant number of microorganisms associated with feed digestion, especially those decomposing cellulose. So, the content of bacteria synthesizing cellulases reached significant values, up to 23.8±1.30 % for Bacteroidales, up to 14.7±2.80 % for Lachnospiraceae, up to 10.2±3.30 % for Ruminococcaceae, and up to 6.6±0.6 % for Clostridiaceae. A number of microorganisms were identified that can be associated with various diseases, e.g. horse with colic, acidosis, laminitis, etc. For example, in all samples of the rectum contents, we detected undesirable members of the order Lactobacillales, such as Streptococcus equinus and Str. bovis, which are associated with the occurrence of acidosis and laminitis in horses. The genus Treponema bacteria was revealed (from 2.2±0.22 to 6.5±0.40 %) which are associated with the occurrence of periodontitis in horses. The enterobacteria of the genera Enterobacter, Serratia, and Escherichia were detected, among which gastroenteritis pathogens can be often found. Further study of the intestinal microbiota profiles may contribute to the improvement of diagnosis and treatment of equine diseases.

Keywords: Equus ferus caballus, intestinal microbiome, Bacteroidales, Lachnospiraceae, Ruminococcaceae, Clostridiaceae, Streptococcus equinus, Streptococcus bovis, Treponema, Enterobacter, Serratia, Escherichia, NGS sequencing, BIOTROF, molecular biological met.

 

REFERENCES

  1. Al Jassim R.A.M., Andrews F.M. The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. Veterinary Clinics of North America: Equine Practice, 2009, 25(2): 199-215 CrossRef
  2. Fink-Gremmels J. The role of mycotoxins in the health and performance of dairy cows. The Veterinary Journal, 2008, 176(1): 84-92 CrossRef
  3. Bäverud V., Gustafsson A., Franklin A., Lindholm A., Gunnarsson A. Clostridium difficile associated with acute colitis in mature horses treated with antibiotics. Equine Veterinary Journal, 1997, 29(4): 279-284 CrossRef
  4. Chapman A.M. Acute diarrhea in hospitalized horses. Veterinary Clinics of North America: Equine Practice, 2009, 25(2): 363-380 CrossRef
  5. Kohnke J., Kelleher F., Trevor-Jones P. Feeding horses in Australia, a guide for horse owners and managers. Union Offset, Canberra, ACT, Australia, 1999.
  6. Santos A.S., Rodrigues M.A.M., Bessa R.J.B., Ferreira L.M., Martin-Rosset W. Understanding the equine cecum-colon ecosystem: current knowledge and future perspectives. Animal, 2011, 5(1): 48-56 CrossRef
  7. Fliegerova K., Mura E., Mrázek J., Moniello G. A comparison of microbial profiles of different regions of the equine hindgut. Livestock Science, 2016, 190: 16-19 CrossRef
  8. Nocek J.E. Bovine acidosis: implications on laminitis. Journal of Dairy Science, 1997, 80(5): 1005-1028 CrossRef
  9. Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE, 2014, 9(3): e91941 CrossRef
  10. Stanley D., Geier M.S., Denman S.E., Haring V.R., Crowley T.M., Hughes R.J., Moore R.J. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 2013, 164(1-2): 85-92 CrossRef
  11. Kim B.R., Shin J., Guevarra R., Lee J.H., Kim D.W., Seol K.-H., Lee J.-H., Kim H.B., Isaacson R. Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 2017, 27(12): 2089‐2093 CrossRef
  12. Tian K., Liu J., Sun Y., Wu Y., Chen J., Zhang R., He N., Dong G. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Animal Feed Science and Technology, 2019, 258: 114299 CrossRef
  13. Il'ina L.A. Izuchenie mikroflory rubtsa krupnogo rogatogo skota na osnove molekulyarno-biologicheskogo metoda T-RFLP s tsel'yu razrabotki sposobov ee optimizatsii. Kandidatskaya dissertatsiya [Study of the cattle rumen microflora by T-RFLP technique for its optimization. PhD Thesis]. St. Petersburg, 2012 (in Russ.).
  14. Husso A., Jalanka J., Alipour M.J., Huhti P., Kareskoski M., Pessa-Morikawa T., Iivanainen A., Niku M. The composition of the perinatal intestinal microbiota in horse. Scientific Reports, 2020, 10(1): 441 CrossRef
  15. Steelman S.M., Chowdhary B.P., Dowd S., Suchodolski J., Janečka J.E. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Veterinary Research, 2012, 8: 231 CrossRef
  16. Venable E.B., Bland S.D., McPherson J.L., Francis J. Role of the gut microbiota in equine health and disease, Animal Frontiers, 2016, 6(3): 43-49 CrossRef
  17. Morrison P.K., Newbold C.J., Jones E., Worgan H.J., Grove-White D.H., Dugdale A.H., Barfoot C., Harris P.A., McG Argo C. The equine gastrointestinal microbiome: impacts of age and obesity. Frontiers in Microbiology, 2018, 9: 3017 CrossRef
  18. Schoster A., Weese J.S., Guardabassi L. Probiotic use in horses — what is the evidence for their clinical efficacy? Journal of Veterinary Internal Medicine, 2014, 28(6): 1640–1652 CrossRef
  19. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Methods for studying microflora of the digestive tract of farm animals and poultry]. Moscow, 2006 (in Russ.).
  20. Jewell K.A., Scott J.J., Adams S.M., Suen G. A phylogenetic analysis of the phylum Fibrobacteres. Systematic and Applied Microbiology, 2013, 36(6): 376-382 CrossRef
  21. Ransom-Jones E., Jones D.L., McCarthy A.J., McDonald J.E. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microbial Ecology, 2012, 63(2): 267-281 CrossRef
  22. Salem S.E., Maddox T.W., Berg A., Antczak P., Ketley J.M., Williams N.J., Archer D.C. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Scientific Reports, 2018, 8(1): 8510 CrossRef
  23. Hogan C.M. “Archaea”, encyclopedia of Earth. E. Monosson, C. Cleveland (eds.). National Council for Science and the Environment, 2010.
  24. Bomberg M., Timonen S. Distribution of cren- and euryarchaeota in scots pine mycorrhizospheres and boreal forest humus. Microbial Ecology, 2007, 54(3): 406-416 CrossRef
  25. Lincoln S.A., Wai B., Eppley J.M., Church M.J., Summons R.E., DeLong E.F. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27): 9858-9863 CrossRef
  26. Rychlik I. Composition and function of chicken gut microbiota. Animals, 2020, 10(1): 103 CrossRef
  27. Gotić J., Grden D., Babić N.P., Mrljak V. The use of probiotics in horses with gastrointestinal disease. American Journal of Animal and Veterinary Sciences, 2017, 12(3): 159-168 CrossRef
  28. Ishizaka S., Matsuda A., Amagai Y., Oida K., Jang H., Ueda Y., Takai M., Tanaka A., Matsuda H. Oral administration of fermented probiotics improves the condition of feces in adult horses. Journal of Equine Science, 2014, 25(4): 65-72 CrossRef
  29. Bailey S.R., Baillon M.-L., Rycroft A.N., Harris P.A., Elliott J. Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Applied and Environmental Microbiology, 2003, 69(4): 2087-2093 CrossRef
  30. Al Jassim R.A.M. Supplementary feeding of horses with processed sorghum grains and oats. Animal Feed Science and Technology, 2006, 125(1): 33-44 CrossRef
  31. Bergsten C. Causes, risk factors, and prevention of laminitis and related claw lesions. Acta Veterinaria Scandinavica, 2003, 44: S157 CrossRef
  32. Bernardeau M., Lehtinen M.J., Forssten S.D., Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 2017, 54(8): 2570-2584 CrossRef
  33. Abriouel H., Franz C.M.A.P., Ben Omar N., Gálvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 2011, 35(1): 201-232 CrossRef
  34. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 2005, 56(4): 845-857 CrossRef
  35. Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon C. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis. Frontiers in Microbiology, 2019, 10: 302 CrossRef
  36. Kennedy R., Lappin D.F., Dixon P.M., Buijs M.J., Zaura, E., Crielaard W., O’Donnell L., Bennett D., Brandt B.W., Riggio M.P. The microbiome associated with equine periodontitis and oral health. Veterinary Research, 2016, 47: 49 CrossRef
  37. Jumas-Bilak E., Carlier J.P., Jean-Pierre H., Citron D., Bernard K., Damay A., Gay B., Teyssier C., Campos J., Marchandin H. Jonquetella anthropi gen. nov., sp. nov., the first member of the candidate phylum ‘Synergistete’' isolated from man. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(12): 2743-2748 CrossRef
  38. Vartoukian S.R., Palmer R.M., Wade W.G. The division “Synergistes”. Anaerobe, 2007, 13(3-4): 99-106 CrossRef
  39. Marchandin H., Damay A., Roudière L., Teyssier C., Zorgniotti I., Dechaud, H., Jean-Pierre H., Jumas-Bilak E. Phylogeny, diversity and host specialization in the phylum Synergistetes with emphasis on strains and clones of human origin. Research in Microbiology, 2010, 161(2): 91-100 CrossRef
  40. Hatheway C.L. Toxigenic clostridia. Clinical Microbiology Reviews, 1990, 3(1): 66-98 CrossRef
  41. Bauer M.A., Kainz K., Carmona-Gutierrez D., Madeo F. Microbial wars: competition in ecological niches and within the microbiome. Microbial Sell, 2018, 5(5): 215-219 CrossRef
  42. Markowiak P., Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 2018, 10: 21 CrossRef
  43. Laptev G.Yu., Novikova N.I., Iyldyrym E.A., Il'ina L.A., Tarlavin N.V. Mikrobiom sel'skokhozyaistvennykh zhivotnykh: svyaz' so zdorov'em i produktivnost'yu [The microbiome of farm animals: a link to health and productivity performance]. St. Petersburg, 2020 (in Russ.).
  44. Fernández S., Fraga M., Silveyra E., Trombert A.N., Rabaza A., Pla M., Zunino P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Beneficial Microbes, 2018, 9(4): 613-624 CrossRef
  45. Iyldyrym E.A., Il’ina L.A., Laptev G.Yu., Zaitsev S.Yu. Influence of Zaslon®-Fito enterosorbent of mycotoxins on rumen microbiome and productivity of dairy cows. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2019, 54(6): 1144-1153 CrossRef
  46. Nuerta B., Barrero-Domínguez B., Galán-Relaño Á., Tarradas C., Maldonado A., Luque I. Essential oils in the control of infections by Staphylococcus xylosus in Horses. Journal of Equine Veterinary Science, 2016, 38: 19-23 CrossRef
  47. Laptev G.Y., Filippova V.A., Kochish I.I., Yildirim E.A., Ilina L.A., Dubrovin A.V., Brazhnik E A., Novikova N.I., Novikova O.B., Dmitrieva M.E., Smolensky V.I., Surai P.F., Griffin D.K., Romanov M.N. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals, 2019, 9(9): 615 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)