PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.4.642eng

UDC: 573.6.086.83:577.21]:615.371

Acknowledgements:
Supported financially by Russian Foundation for Basic Research, grant mol_а No. 18-316-00092

 

RESULTS OF Fc-PROTEIN FUSION TECHNOLOGY APPLICATION FOR VACCINE DESIGN AGAINST INFECTIOUS DISEASES OF ANIMALS AND HUMAN (review)

E.I. Katorkina, S.Zh. Tsybanov, A.S. Malogolovkin

Federal Research Center for Virology and Microbiology, 1, ul. Akademika Bakuleva, pos. Vol’ginskii, Petushinskii Region, Vladimir Province, 601125 Russia, e-mail elena.fadeeva.1990@inbox.ru, cybanov@mail.ru, AMalogolovkin@vniivvim.ru (corresponding author ✉ )

ORCID:
Katorkina E.I. orcid.org/0000-0003-3329-0182
Malogolovkin A.S. orcid.org/0000-0003-1352-1780
Tsybanov S.Zh. orcid.org/0000-0002-4919-3080

Received November 27, 2018

 

The main criteria for current vaccines design are effectiveness, efficaciousness and safety. Increasing requirements for vaccine safety and purity push forward not only classical vaccine development, but also new generation vaccine technology, including sub-unit, recombinant, anti-idiotypic, DNA vaccines etc. This recombinant technology has already demonstrated its advantage, efficaciousness and safety in a large field of therapeutic and curative drug development for animal and human (S. Khan et al., 2016). In 2011, six novel drugs were created based on the new Fc-fusion protein technology. Most of the newly developed drugs affect receptor-ligand interactions, acting as antagonists by blocking direct receptor binding, i.e. EnbrelÒ (etanercept; Amgen, USA), ZaltrapÒ (aflibercept; Sanofi, France), ArcalystÒ (rilonacept; Regeneron, USA), or as agonists for direct stimulation of receptor function which augment immune response as AmeviveÒ (alefacept, Astellas, USA) does, or decrease immune response as NplateÒ (romiplostim; Amgen, USA) does. In this review, we pay attention to the most relevant results from the last few years for virus and bacterial vaccine designed based on Fc-fusion technology. The Fc-chimeras are hybrid sequences in which Fc-fragment of IgG (Fc-IgG) and targeted therapeutic protein are fused in an entire protein molecule (V. Pechtner et al., 2017). In this fusion, the hinge region of Fc-IgG is a flexible spacer between therapeutic protein and conservative part of IgG. It helps to minimize potential negative effect of two functional domains to each other. Therapeutic drugs based on Fc-fusion proteins are divided in three types, the receptor-Fc, peptide-Fc, and monomer-Fc. The Fc-fused proteins have tremendous therapeutic potential, since Fc domain in this molecules helps to specifically augment the pharmacodynamics values. Presence of Fc-domain in hybrid molecules prolongs half elimination of protein from plasma, which extends drug therapeutic activity and slows down kidney clearance for large molecules. Here, we summarize the most significant experimental data of Fc-fusion technology application against such pathogens as human immunodeficiency virus (D. Capon et al., 1989), Ebola virus (K. Konduru et al., 2011), Dengue virus (M.Y. Kim et al., 2018), influenza virus (L. Du et al., 2011), Mycobacterium tuberculosis (S. Soleimanpour et al., 2015), classical swine fever virus(Z. Liu et al., 2017). We also discuss the critical aspects of mechanism of action, drug design and Fc-fused protein production. Targeted activation of effector systems boosts protective potential of immunogenic molecules and broadens its application. The interest of this review is focused on an application of Fc-fused proteins as potential vaccines against infectious human and animal diseases. We also briefly discuss the perspectives of Fc-fused antigens for novel effective medicine developments using African swine fever virus as an example.

Keywords: Fc fragment, human immunodeficiency virus, Ebola virus, influenza virus, tuberculosis, classical swine fever virus, African swine fever virus, vaccination.

 

REFERENCES

  1. Institute of Medicine (US) Committee to Study Priorities for Vaccine Development. Progress in vaccine development. In: Vaccines for the 21st century: a tool for decisionmaking. K.R. Stratton, J.S. Durch, R.S. Lawrence (eds.). The National Academies Press, Washington, DC, 2000: 17-38 CrossRef
  2. Shen A.K., Cooke M.T. Infectious disease vaccines. Nature Reviews Drug Discovery, 2018, 18: 169-170 CrossRef
  3. Dellepiane N., Griffiths E., Milstien J.B. New challenges in assuring vaccine quality. Bulletin of the World Health Organization: the International Journal of Public Health,2000, 78(‎2)‎: 155-162.
  4. Odir S., Dellagostin A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnology Research and Innovation, 2017, 1(1): 6-13 CrossRef
  5. Cantas L., Suer K. Review: The important bacterial zoonoses in “one health” concept. Frontiers in Public Health, 2014, 2: 114 CrossRef
  6. Arias M., de la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., Martins C., Parkhouse R.M., Revilla Y., Rodriguez F., Sanchez-Vizcaino J.-M.. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines, 2017, 5(4): 35 CrossRef
  7. Burmakina, G, Malogolovkin, A., Tulman, E.R., Zsak, L., Delhon, G.,  Diel D.G. Shobogoro N.M, Morgunov Y.P., Morgunov S.Y., Kolbasov D., Rock D. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. Journal of General Virology,2016, 97(7): 1670-1675 CrossRef
  8. Sereda A.D., Imatdinov A.R., Dubrovskaya O.A., Kolbasov D.V. Mechanisms of immune response and prospects for DNA vaccines against African swine fever (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(6): 1069-1082 CrossRef
  9. Khan S., Ullah M.V, Siddique R., Nabi G., Manan S., Yousaf M., Hou R. Role of recombinant DNA technology to improve life. International Journal of Genomics, 2016, 2016: Article ID 2405954 CrossRef
  10. Pechtner V., Karanikas C.A., García-Pérez L.E., Glaesner W. A new approach to drug therapy: Fc-fusion technology. Primary Health Care, 2017, 7: 255 CrossRef
  11. Strohl W.R. Fusion proteins for half-life extension of biologics as a strategy to make Biobetters. BioDrugs, 2015, 29(4): 215-239 CrossRef
  12. Chen X., Zaro J., Shen W.C. Fusion protein linkers: effects on production, bioactivity, and pharmacokinetics. Advanced Drug Delivery Reviews, 2013, 65(10): 1357-1369 CrossRef
  13. Unverdorben F., Richter F., Hutt M., Seifert O.,  Malinge P., Fischer N., Kontermann R.E. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs, 2016, 8(1): 120-128 CrossRef
  14. Levin D., Golding B., Strome S.E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends in Biotechnology, 2015, 33(1): 27-34 CrossRef
  15. Zvonova E.A., Tyurin A.A., Solov'ev A.A., Goldenkova-Pavlova I.V. Uspekhi sovremennoi biologii, 2017, 4(137): 398-419 CrossRef (in Russ.).    
  16. Czajkowsky D.M., Hu J., Shao Z., Pleass R.J. Fc-fusion proteins: new developments and future perspectives.EMBO Molecular Medicine, 2012, 4(10): 1015-1028 CrossRef
  17. Nelson A., Reichert J. Development trends for therapeutic antibody fragments. Nature Biotechnology, 2009, 27(4): 331-337 CrossRef
  18. Strohl W.R. Optimization of Fc-mediated effector functions of monoclonal antibodies. Current Opinion in Biotechnology, 2009, 20(6): 685-691 CrossRef
  19. Strohl W.R., Knight D.M. Discovery and development of biopharmaceuticals: current issues. Current Opinion in Biotechnology, 2009, 20(6): 668-672 CrossRef
  20. Reichert J. Antibody-based therapeutics to watch in 2011. MAbs, 2011, 3(1): 76-99 CrossRef
  21. Beck A., Reichert J. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs, 2011, 3(5): 415-416 CrossRef
  22. Dumont J., Low S., Peters R., Bitonti A. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs, 2006, 20(3): 151-160 CrossRef
  23. Ye L, Zeng R., Bai Y., Roopenian D.C., Zhu X. Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nature Biotechnology, 2011, 29(2): 158-163 CrossRef
  24. Congy-Jolivet N., Probst A., Watier H., Thibault G. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Critical Reviews in Oncology/Hematology, 2007, 64(3): 226-233 10.1016/j.critrevonc.2007.06.013">CrossRef
  25. Curtis J., Bourne F.J. Half-lives of immunoglobulins IgG, IgA and IgM in the serum of new-born pigs. Immunology, 1973, 24(1): 147-155.
  26. Rath T., Baker K., Dumont J.A., Peters R.T., Jiang H., Qiao S.W., Lencer W.I., Pierce G.F., Blumberg R.S. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Current Opinion in Biotechnology, 2015, 35(2): 235-254 CrossRef
  27. Ghose S., Hubbard B., Cramer S.M. Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Biotechnology and Bioengineering, 2007, 96(4): 768-779 CrossRef
  28. Li F., Ravetch J.V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science, 2011, 333(6045): 1030-1034 CrossRef
  29. Stapleton N.M., Andersen J.T., Stemerding A.M., Bjarnarson S.P., Verheul R.C., Gerritsen J., Zhao Y., Kleijer M., Sandlie I., de Haas M., Jonsdottir I., van der Schoot C.E., Vidarsson G. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nature Communications, 2011, 2: 599 CrossRef
  30. Capon D.J., Chamow S.M., Mordenti J., Marsters S.A., Gregory T., Mitsuya H., Byrn R.A., Lucas C., Wurm F.M., Groopman J.E. Designing CD4 immunoadhesins for AIDS therapy. Nature, 1989, 337(6207): 525-531 CrossRef
  31. Ratcliff A., Arts E. HIV-1 entry, inhibitors, and resistance. Viruses, 2010, 2(5): 1069-1105 CrossRef
  32. Dennison S., Anasti K., Jaeger F., Stewart S., Pollara J., Liu P., Kunz E., Zhang R., Vandergrift N., Permar S., Ferrari G., Tomaras G., Bonsignori M., Michael N., Kim J., Kaewkungwal J., Nitayaphan S., Pitisuttithum P., Rerks-Ngarm S., Liao H.X., Haynes B.F., Alam S.M. Vaccine-induced HIV-1 envelope gp120 constant region 1-specific antibodies expose a CD4-inducible epitope and block the interaction of HIV-1 gp140 with galactosylceramide. Journal of Virology, 2014, 88(16): 9406-9417 CrossRef
  33. Feldmann H., Geisbert T.W. Ebola haemorrhagic fever. Lancet, 2011, 377(9768): 849-862 CrossRef
  34. Henao-Restrepo A.M., Camacho A., Longini I. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial. Lancet, 2017, 389(10068): 505-518 CrossRef
  35. Towner J.S., Sealy T.K., Khristova M.L., Albariño C.G., Conlan S., Reeder S.A., Quan P.L., Lipkin W.I., Downing R., Tappero J.W., Okware S., Lutwama J., Bakamutumaho B., Kayiwa J., Comer J.A., Rollin P.E., Ksiazek T.G., Nichol S.T. Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathogens, 2008, 4(11): e1000212 CrossRef
  36. Konduru K., Bradfute S.B., Jacques J., Manangeeswaran M., Nakamura S., Morshed S., Wood S.C., Bavari S., Kaplan G.G. Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice. Vaccine, 2011, 29(16): 2968-2977 CrossRef
  37. Jeffers S., Sanders D., Sanchez A. Covalent modifications of the Ebola virus glycoprotein. Journal of Virology, 2002, 76(24): 12463-12472 CrossRef
  38. Takada A., Robison C., Goto H., Sanchez A., Murti K.G., Whitt M.A., Kawaoka Y. A system for functional analysis of Ebola virus glycoprotein. PNAS USA,1997, 94(26): 14764-14769 CrossRef
  39. Jones S.M., Feldmann H., Ströher U., Geisbert J.B., Fernando L., Grolla A., Klenk H.D., Sullivan N.J., Volchkov V.E., Fritz E.A., Daddario K.M., Hensley L.E., Jahrling P.B., Geisbert T.W. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005, 11(7): 786-790 CrossRef
  40. Sullivan N.J., Geisbert T.W., Geisbert J.B., Xu L., Yang Z.Y., Roederer M., Koup R.A., Jahrling P.B., Nabel G.J. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 2003, 424(6949): 681-684 CrossRef
  41. Du L., Leung V.H., Zhang X., Zhou J., Chen M., He W., Zhang H.Y., Chan C.C., Poon V.K., Zhao G., Sun S., Cai L., Zhou Y., Zheng B., Jiang S. A recombinant vaccine of H5N1 HA1 fused with foldon and human IgG Fc induced complete cross-clade protection against divergent H5N1 viruses. PLoS ONE, 2011, 6(1): e16555 CrossRef
  42. Price G.E., Soboleski M.R., Lo C.Y., Misplon J.A., Pappas C., Houser K.V., Tumpey T.M., Epstein S.L. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses. Vaccine, 2009, 27(47): 6512-6521 CrossRef
  43. Loureiro S., Ren J., Phapugrangkul P., Colaco C., Bailey C., Shelton H., Molesti E., Temperton N., Barclay W., Jones I. Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. Journal of Virology, 2011, 85(6): 3010-3014 CrossRef
  44. Bernard H.U., Burk R.D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401(1): 70-79 CrossRef
  45. Chen X., Liu H., Zhang T., Liu Y., Xie X., Wang Z., Xu X. A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types. PLoS ONE, 2014, 9(5): e95448 CrossRef
  46. Kemp T.J, Hildesheim A., Safaeian M., Dauner J.G., Pan Y., Porras C., Schiller J.T., Lowy D.R., Herrero R., Pinto L.A. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine, 2011, 29(11): 2011-2024 CrossRef
  47. Alphs H.H., Gambhira R., Karanam B., Roberts J.N., Jagu S., Schiller J.T., Zeng W., Jackson D.C., Roden R.B. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. PNAS USA, 2008, 105(15): 5850-5855 CrossRef
  48. Khiavi F., Arashkia A., Golkar M., Nasimi M., Roohvand F., Azadmanesh K. A dual-type L2 11-88 peptide from HPV types 16/18 formulated in Montanide ISA 720 induced strong and balanced Th1/Th2 immune responses, associated with high titers of broad spectrum cross-reactive antibodies in vaccinated mice. Journal of Immunology Research, 2018: 9464186 CrossRef
  49. Global Tuberculosis Report 2018. World Health Organization, Geneva, 2018. Available http://www.unaids.org/ru/resources/presscentre/
    featurestories/2018/september/tb-and-hiv. No date.
  50. Soleimanpour S., Farsiani H., Mosavat A., Ghazvin K., Eydgahi M., Sankian M., Sadeghian H., Meshkat Z., Rezaee1 S.A. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Applied Microbiology and Biotechnology, 2015, 99: 10467-10480 CrossRef
  51. O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P. The immune response in tuberculosis. Annual Review of Immunology, 2013, 31: 475-527 CrossRef
  52. Ohara N. Current status of tuberculosis and recombinant bacillus Calmette-Guérin vaccines. Journal of Oral Biosciences,2012, 54(2): 92-95 CrossRef
  53. Xin Q., Niu H., Li Z., Zhang G., Hu L., Wang B., Li J., Yu H., Liu W., Wang Y., Da Z., Li R., Xian Q., Wang Y., Zhang Y., Jing T., Ma X. Zhu B. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS ONE, 2013, 8(8): e72745 CrossRef
  54. Jee B., Singh Y., Yadav R., Lang F. Small heat shock protein 16.3 of Mycobacterium tuberculosis: after two decades of functional characterization. Cellular Physiology and Biochemistry, 2018, 49(1): 368-380 CrossRef
  55. Taylor J.L., Wieczorek A., Keyser A.R., Grover A., Flinkstrom R., Karls R.K., Bielefeldt-Ohmann H., Dobos K.M., Izzo A.A. HspX-mediated protection against tuberculosis depends on its chaperoning of a mycobacterial molecule. Immunology and Cell Biology, 2012, 90(10): 945-954 CrossRef
  56. Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., Wint G.R., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. The global distribution and burden of Dengue. Nature, 2013, 496(7446): 504-507 CrossRef
  57. Pigmented ethnic skin and imported dermatoses: a text-atlas. C. Orfanos, C. Zouboulis, C. Assaf (eds.). Springer International Publishing, 2018 CrossRef
  58. Kim M.Y., Copland A., Nayak K., Chandele A., Ahmed M.S., Zhang Q., Diogo G.R., Paul M.J., Hofmann S., Yang M.S., Jang Y.S., Ma J.K., Reljic R. Plant expressed Fc-fusion protein tetravalent Dengue vaccine with inherent adjuvant properties. Plant Biotechnology Journal, 2018, 16(7): 1283-1294 CrossRef
  59. Brewoo J.N., Kinney R.M., Powell T.D., Arguello J.J., Silengo S.J., Partidos C.D., Huang C.Y., Stinchcomb D.T., Osorio J.E. Immunogenicity and efficacy of chimeric Dengue vaccine (DENVax) formulations in interferon‐deficient AG129 mice. Vaccine, 2012, 30(8): 1513-1520 CrossRef
  60. Kim M.Y., Van Dolleweerd C., Copland A., Paul M.J., Hofmann S., Webster G.R., Julik E., Ceballos-Olvera I., Reyes-Del Valle J., Yang M.S., Jang Y.S., Reljic R., Ma J.K. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a Dengue vaccine candidate. Plant Biotechnology Journal, 2017, 15(12): 1590-1601 CrossRef
  61. De Alwis R., Smith S.A., Olivarez N.P., Messer W.B., Huynh J.P., Wahala W.M., White L.J., Diamond M.S., Baric R.S., Crowe J.E., de Silva A.M. Identification of human neutralizing antibodies that bind to complex epitopes on Dengue virions. PNAS USA, 2012, 109(19): 7439-7444 CrossRef
  62. Kim M.Y., Kim B.Y., Oh S.M., Reljic R., Jang Y.S., Yang M.S. Oral immunization of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus Dengue cEDIII antigen induces antibodies to all four Dengue serotypes. Plant Biotechnology Journal, 2016, 92(3): 347-356 CrossRef
  63. Tripathi N.K., Shrivastava A. Recent developments in recombinant protein–based Dengue vaccines. Frontiers in Immunology,2018, 9: 1919 CrossRef
  64. Ji W., Guo Z., Ding N.Z., He C.Q. Studying classical swine fever virus: making the best of a bad virus. Virus Research, 2015, 197: 35-47 CrossRef
  65. Liu Z., Liu Y., Zhang Y., Yang Y., Ren J., Zhang X., Du E. Surface displaying of swine IgG1 Fc enhances baculovirus-vectored vaccine efficacy by facilitating viral complement escape and mammalian cell transduction. Veterinary Research, 2017, 48(1): 29 CrossRef
  66. Martyn J.C., Cardin A.J., Wines B.D., Cendron A., Li S., Mackenzie J., Powell M., Gowans E.J. Surface display of IgG Fc on baculovirus vectors enhances binding to antigen-presenting cells and cell lines expressing Fc receptors. Archives of Virology, 2009, 154(7): 1129-1138 CrossRef
  67. Renson P., Le Dimna M., Keranflech A., Cariolet R., Koenen F., Le Potier M-F. CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses. Veterinary Research, 2013, 44(1): 9 CrossRef
  68. Nascimento I.P., Leite L.C.C. Recombinant vaccines and the development of new vaccine strategies. Brazilian Journal of Medical and Biological Research, 2012, 45(12): 1102-1111 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)