doi: 10.15389/agrobiology.2018.4.831eng

UDC 636.2:619:618.3:577.1

 

ANTIOXIDANT STATUS AND FUNCTIONAL CONDITION
OF RESPIRATORY SYSTEM OF NEWBORN CALVES
WITH INTRAUTERINE GROWTH RETARDATION

V.A. Safonov1, V.I. Mikhalev2, A.E. Chernitskiy2

1Vernadskii Institute of Geochemistry and Analytical Chemistry RAS, Federal Agency of Scientific Organizations, 19, ul. Kosygina, Moscow, 119991 Russia, e-mail safonovbio@gmail.com;
2All-Russian Research Veterinary Institute of Pathology, Pharmacology and Therapy RAAS, Federal Agency of Scientific Organizations, 114-b, ul. Lomonosova, Voronezh, 394087 Russia, e-mail vnivipat@mail.ru, cherae@mail.ru (✉ corresponding author)

ORCID:
Safonov V.A. orcid.org/0000-0002-5040-6178
Chernitskiy A.E. orcid.org/0000-0001-8953-687X
Mikhalev V.I. orcid.org/0000-0001-9684-4045
The authors declare no conflict of interests

Received March 21, 2018

 

Intrauterine fetal and embryo growth retardation (IUGR), defined as a discrepancy of embryo forming and fetus size and their gestation terms, is a common pathology among farm animals. Respiratory dysfunctions in newborns with IUGR are among the factors leading to animal death from birth to weaning. The immature antioxidant defense system (AOS) of newborns with IUGR predisposes to oxidative stress progression and associated pathologies. We show in this paper the lack of enzymatic and non-enzymatic links of antioxidant protection, an increased concentration of malonic dialdehyde in blood and in exhaled air, and higher expiration of enzymes of different subcellular localization, i.e. alanine aminotransferase, g-glutamyl transferase, aspartate aminotransferase, indicating damage to the respiratory tract cells. These data contribute to elucidating mechanisms of respiratory dysfunctions as influenced by IUGR. A comparative study of AOS indicators, functional state of respiratory organs of newborn calves and the respiratory disease progression in the neonatal period was carried out at a large dairy complex (Agrotech-Garant Nashchekino Co. Ltd, Anninsky Region, Voronezh Province) in 2013. A total of 53 red-motley calves were examined, including 28 calves with IUGR in history and 25 ones whose mothers had physiological course of pregnancy (control group). In 24 hours after the calves’ birth, switch tail hair samples, blood and exhaled breath condensate (EBC) were collected for biochemical studies, the heart rate (HR) and frequency of respiratory rate (RR) per minute, the ratio of HR/RR (Hildebrandt index), tidal volume (TV) and respiratory minute volume (RMV), the volume of EBC produced per minute (V1) and from 100 liter of exhaled air (V2) were determined. The hair concentrations of iron, copper, zinc, manganese, selenium and cobalt were determined by atomic absorption spectrophotometry (Shimadzu AA6300, Japan); the activity of catalase, selenium-dependent glutathione peroxidase (GPO), superoxide dismutase (SOD) in blood, the blood concentration of malonic dialdehyde (MDA), the serum (plasma) content of vitamin A, α-tocopherol, L-ascorbic acid and total antioxidant activity (AOA) were studied spectrophotometrically (Shimadzu UV-1700, Japan). The MDA concentration (Shimadzu UV-1700, Japan), intensity of iron-induced chemiluminescence (BHL-07, Russia), the activity of alanine aminotransferase (ALAT), γ-glutamyltransferase (GGT) and aspartate aminotransferase (ASAT) (Hitachi-902, Japan) were examined in EBC of calves. In the calves with IUGR, as compared to the control group, blood catalase activity reduced by 14.4 % (P < 0.001), GPO by 14.0 % (P < 0.001) and SOD by 33.8 % (P < 0.001), blood serum content of vitamin A decreased by 36.7 % (P < 0.05) and α-tocopherol by 38.3 % (P < 0.001), while blood plasma AOA was higher by 18.6 % (P < 0.01), hair concentration of copper decreased by 28.3 % (P < 0.001), zinc by 10.7 % (P < 0.001), manganese by 9.4 % (P < 0.001), selenium by 26.4 % (P < 0.001) and cobalt by 36.8 % (P < 0.001), the MDA level in blood and EBC increased by 26.8 % (P < 0.001) and 119.5 % (P < 0.001), respectively, also, intensity of chemiluminescence outbreak Imax and the light sum of chemiluminescence S of EBC were higher by 36.2 % (P < 0.01) and 40.6 % (P < 0.01), respectively. An increase in the ratio of S/tg2α in EBC of calves with IUGR (by 35.5 % compared to the control group, P < 0.01) indicated imbalance of oxidative and antioxidant activity of EBC and oxidative stress progression. Structural and functional damage of respiratory tract under oxidative stress of IUGR calves was accompanied by an increase in ALAT expiration by 105.9 % (P < 0.001), GGT by 416.1 % (P < 0.001), ASAT by 62.5 % (P < 0.001), and respiratory moisture release (V2) by 67.3 % (P < 0.001) compared to the control group. An increase in Hildebrandt index of calves with IUGR (by 7.9 % compared to the control group, P < 0.05) indicates the autonomic regulation disorder and the cardiorespiratory functional system overstrain. A statistically significant relationship was found between the risk of bronchopneumonia development and the S/tg2a ratio which reflects the balance of EBC oxidative and antioxidant activity (rt-K = +0.58, P < 0.01), and also the blood activity of catalase (rt-K = -0.68, P < 0.01), GPO (rt-K = -0.36, P < 0.05) and SOD (rt-K = -0.62, P < 0.01).

Keywords: intrauterine fetal and embryo growth retardation, newborn calves, antioxidant defense system, oxidative stress, exhaled breath condensate, respiratory diseases, bronchopneumonia.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Wu G., Bazer F.W., Wallace J.M., Spencer T.E. Board-invited review: Intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci., 2006, 84: 2316-2337 CrossRef
  2. Nezhdanov A.G., Mikhalev V.I, Klimov N.T., Smirnova E.V. Veterinariya, 2014, 3: 36-39 (in Russ.).
  3. Wang J., Feng C., Liu T., Shi M., Wu G., Bazer F.W. Physiological alterations associated with intrauterine growth restriction in fetal pigs: causes and insights for nutritional optimization. Molecular Reproduction & Development, 2017, 84(9): 897-904 CrossRef
  4. Nezhdanov A., Shabunin S., Mikhalev V., Klimov N., Chernitskiy A. Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows. Turk. J. Vet. Anim. Sci., 2014, 38(6): 675-680 CrossRef
  5. Rossdale P.D., Ousey J.C. Fetal programming for athletic performance in the horse: Potential effects of IUGR. Equine Vet. Educ., 2003, 6: 24-37 CrossRef
  6. Gallo L.A., Tran M., Moritz K.M., Wlodek M.E. Developmental programming: variations in early growth and adult disease. Clin. Exp. Pharmacol. Physiol., 2013, 40(11): 795-802 CrossRef
  7. Gonzales-Bulnes A., Astiz S., Parraguez V.H., Garcia-Contreras C., Vazquez-Gomez M. Empowering translation research in fetal growth restriction: sheep and swine animal models. Current Pharmaceutical Biotechnology, 2016, 17(10): 848-855 CrossRef
  8. Greenwood P.L., Hunt A.S., Hermanson J.W., Bell A.W. Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. J. Anim. Sci., 1998, 76(9): 2354-2367 CrossRef
  9. Mellor D.J. Nutritional and placental determinants of foetal growth rate in sheep and consequences for the newborn lamb. Brit. Vet. J., 1983, 139(4): 307-324 CrossRef
  10. Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clinical Medicine Insights: Pediatrics, 2016, 10: 67-83 CrossRef
  11. Thornbury J.C., Sibbons P.D., van Velzen D., Trickey R., Spitz L. Histological investigations into the relationship between low-birth-weight and spontaneous bowel damage in the neonatal piglet. Pediatric Pathology, 1993, 13(1): 59-69 CrossRef
  12. Ginther O.J., Douglas R.H. The outcome of twin pregnancies in mares. Theriogenology, 1982, 18(2): 237-244 CrossRef
  13. Lipsett J., Tamblyn M., Madigan K., Roberts P., Cool J.C., Runciman S.I., McMillen I.C., Robinson J., Owens J.A. Restricted fetal growth and lung development: a morphometric analysis of pulmonary structure. Pediatric Pulmonology, 2006, 41(12): 1138-1145 CrossRef
  14. Rozance P.J., Seedorf G.J., Brown A., Roe G., O’Meara M.C., Gien J., Tang J.-R., Abm-an S.H. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2011, 301(6): L860-L871 CrossRef
  15. Che L., Xuan Y., Hu L., Liu Y., Xu Q., Fang Z., Lin Y., Xu S., Wu D., Zhang K., Chen D. Effect of postnatal nutrition restriction on the oxidative status of neonates with intrauterine growth restriction in a pig model. Neonatology, 2015, 107(2): 93-99 CrossRef
  16. Chernitskii A.E., Retskii M.I., Zolotarev A.I. Ustroistvo dlya sbora kondensata vydykhaemogo vozdukha u zhivotnykh. Pat. 134772 (RF) MPK A61B 5/00. Gosudarstvennoe nauchnoe uchrezhdenie Vserossiiskii nauchno-issledovatel'skii veterinarnyi institut patologii, farmakologii i terapii Rossiiskoi akademii sel'skokhozyaistvennykh nauk (RF). ¹ 2013135753/14. Zayavl. 30.07.2013. Opubl. 27.11.2013. Byul. ¹ 33 [Device for collecting condensate of exhaled air in animals. Patent 134772 (RF), IPC A61B 5/00. Appl. 30.07.2013. Publ. 27.11.2013. Bull. ¹ 33]CrossRef (in Russ.).
  17. Retskii M.I., Shabunin S.V., Bliznetsova G.N., Rogacheva T.E., Ermolova T.G., Fomenko O.Yu., Bratchenko E.V., Dubovtsev V.Yu., Kaverin N.N., Tsebrzhinskii O.I. Metodicheskie polozheniya po izucheniyu protsessov svobodnoradikal'nogo okisleniya i sistemy antioksidantnoi zashchity organizma [Methodical provisions for studying free radical oxidation and the system of antioxidant defense of the body]. Voronezh, 2010 (in Russ.).
  18. Sirota T.V. Voprosy meditsinskoi khimii, 1999, 45(3): 263-272 (in Russ.).
  19. Miller K.W., Yang C.S. An isocratic high-performance liquid chromatography method for the simultaneous analysis of plasma retinol, a-tocopherol and various carotenoids. Anal. Biochem., 1985, 145(1): 21-26 CrossRef
  20. Okamura M. An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clinica Chimica Acta, 1980, 103(3): 259-268 CrossRef
  21. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem., 2004, 37(2): 112-119 CrossRef
  22. Voronkova Y.G., Popova T.N., Agarkov A.A., Skulachev M.V. Influence of 10-(6'-plastoquino-nyl)decyltriphenylphosphonium (SKQ1) on oxidative status in rats with protamine sulfate-induced hyperglycemia. Biochemistry Moscow, 2015, 80(12): 1606-1613 CrossRef
  23. Andronov S.V., Lobanov A.A. Vestnik Severo-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I.I. Mechnikova, 2012, 4(1): 73-77 (in Russ.).
  24. McGuirk S.M. Disease management of dairy calves and heifers. Veterinary Clinics of North America: Food Animal Practice, 2008, 24: 139-153 CrossRef (in Russ.).
  25. Fudin N.A., Sudakov K.V., Khadartsev A.A., Klassina S.Ya., Chernyshov S.V. Vestnik novykh meditsinskikh tekhnologii, 2011, 18(3): 244-248 (in Russ.).
  26. Chernitskii A., Retskii M. Kondensat vydykhaemogo vozdukha. Ispol'zovanie v diagnostike i prognozirovanii respiratornykh boleznei telyat [Condensate of the exhaled air — use in the diagnosis and prediction of respiratory diseases of calves.]. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbrücken, 2010 (in Russ.).
  27. Chernitskii A.E., Efanova L.I., Zolotarev A.I., Shakhov A.G., Shabunin S.V., Retskii M.I. Metodicheskoe posobie po prognozirovaniyu i rannei diagnostike respiratornykh boleznei u telyat [Manual on prediction and early diagnosis of respiratory diseases in calves]. Voronezh, 2013 CrossRef (in Russ.).
  28. Retskii M.I., Bliznetsova G.N., Shabunin S.V. Metabolicheskie adaptatsii telyat v rannii postnatal'nyi period [Metabolic adaptation of calves during early postnatal period]. Voronezh, 2010 (in Russ.).
  29. Chernitskii A.E., Retskii M.I., Zolotarev A.I. Functional formation of respiratory system in neonatal calves with different viability. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 4: 99-104 CrossRef (in Russ.).
  30. Sharma A., Ford S., Calvert J. Adaptation for life: a review of neonatal physiology. Anaesthesia & Intensive Care Medicine, 2011, 12(3): 85-90 CrossRef
  31. Mutinati M., Pantaleo M., Roncetti M., Piccinno M., Rizzo A., Sciorsci R.L. Oxidative stress in neonatology. A review. Reprod. Dom. Anim., 2014, 49(1): 7-16 CrossRef
  32. Retskii M.I. Sistema antioksidantnoi zashchity u zhivotnykh pri stresse i ego farmakologicheskoi regulyatsii. Doktorskaya dissertatsiya [Antioxidant protection in animals under stress and its pharmacological regulation. DSc Thesis]. Voronezh, 1997 (in Russ.).
  33. Frank L., Sosenko I.R. Prenatal development of lung antioxidant enzymes in four species. The Journal of Pediatrics, 1987, 110(1): 106-110 CrossRef
  34. Harman A.W., McKenna M., Adamson G.M. Postnatal development of enzyme activities associated with protection against oxidative stress in the mouse. Biol. Neonate, 1990, 57(3-4): 187-193 CrossRef
  35. Surai P.F., Speake B.K., Noble R.C., Sparks N.H. Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biol. Trace Elem. Res., 1999, 68(1): 63-78 CrossRef
  36. Enukashvili A.I. Mineral'nyi sostav volosyanogo pokrova krupnogo rogatogo skota v svyazi s vozrastom, polom, sezonom goda i fiziologicheskim sostoyaniem. Kandidatskaya dissertatsiya [Mineral composition of hair in a relationship with cattle age, sex, season and physiological condition. PhD Thesis]. St. Petersburg, 1992 (in Russ.).
  37. Alekhin Yu.N., Prigorodova O.V.. Naukovii v³snik veterinarno¿ meditsini, 2014, 13(108): 21-24 (in Russ.).
  38. Rickett G.M., Kelly F.J. Developmental expression of antioxidant enzymes in guinea pig lung and liver. Development, 1990, 108(2): 331-336.
  39. Shukla D., Saxena S., Jayamurthy P., Sairam M., Singh M., Jain S.K., Bansal A., Ilavazaghan G. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs. High Altitude Medicine & Biology, 2009, 10(1): 57-69 CrossRef
  40. Prohaska J.R. Changes in Cu,Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. The Journal of Nutrition, 1991, 121(3): 355-363 CrossRef
  41. McElroy M.C., Postle A.D., Kelly F.J. Catalase, superoxide dismutase and glutathione peroxidase activities of lung and liver during human development. Biochim. Biophys. Acta, 1992, 1117(2): 153-158 CrossRef
Hracsko Z., Orvos H., Novak Z., Pal A., Varga I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Report, 2008, 13(1): 11-16

 

back