doi: 10.15389/agrobiology.2018.4.687eng

UDC 636.018:573.22

Acknowledgements:
This article is prepared under the Agreement with the Ministry of Education and Science of the Russian Federation ¹ 14.610.21.0016 of 03.10.2017 “Development and implementation of a new series of highly effective medicinal-plant-born phytobiotics for highly productive and environmentally friendly animal farming”, the unique identifier RFMEF161017X0016

 

USE OF PHYTOBIOTICTS IN FARM ANIMAL FEEDING
(review)

O.A. Bagno1, O.N. Prokhorov1, S.A. Shevchenko2, A.I. Shevchenko2, 3,
T.V. Dyadichkina1

1Kemerovo State Agricultural Institute, 5, ul. Markovtseva, Kemerovo, 650056 Russia, e-mail oaglazunova@mail.ru, oldao@mail.ru, dyadi-tanya@yandex.ru;
2Gorno-Altaisk State University, 1, ul. Lenkina, Gorno-Altaisk, 649000 Russia, e-mail se-gal@list.ru (✉ corresponding author);
3Gorno-Altaisk Research Institute of Agriculture, Federal Agency for Scientific Organizations.2, ul. Katunskaya, s. Maiama, Altai Republic, Russia, e-mail shaisol60@mail.ru

ORCID:
Bagno O.A. orcid.org/0000-0003-4047-2355
Prokhorov O.N. orcid.org/0000-0003-1916-661X
Shevchenko S.A. orcid.org/0000-0003-4361-3168
Shevchenko A.I. orcid.org/0000-0002-7753-1761
Dyadichkina T.V. orcid.org/0000-0003-1432-1166
The authors declare no conflict of interests

Received April 2, 2018

 

Realization of genetic potential of animal productivity in modern commercial livestock breeding necessitates the use of various biologically active dietary additives to ensure animal performance and homeostasis (R.R. Akhmedkhanova et al., 2010). The first such additives were feed antibiotics used since 1950s all over the world (R.I. Castillo-Lopez et al., 2017). However, it turned out that the excessive and uncontrolled use of antibiotics adversely affects the body of animals and birds. Microorganisms, when mutating, acquire resistance to antibiotics, thereby reducing the positive effect of the drugs. In addition, their cumulative and toxic effects occur. Over time, this led to a ban on the use of all types of feed antibiotics in the European Union (S.M. Alieva et al., 2017). After revealing the negative effects of feed antibiotics, a new tendency emerged in the world. That was a trend towards complete or partial replacement of these drugs with probiotics, the living microorganisms which are symbionts of the normal gut microflora. Probiotics are proven effective in growing young farm animals of different species in the early postnatal period and now proboitics are increasingly being used. In recent years, many scientists and practitioners of animal feeding have paid much attention to phytobiotics, the plant-born bioactive substances (W. Windisch et al., 2006). The fact that animals, including carnivores, when restricted in free walking, must eat green or at least dried plants was an empirical knowledge that humanity acquired simultaneously with the beginning of animal domestication. Targeted study on the impact of dietary bioactive plant-born compounds of different origin on animal and poutry performance, and the development of standardized phytobiotic preparations for livestock, including complex phytobiotics, are in the focus during last two or three decades (N.M. Kazachkova, 2017). Exterior and interior parameters are estimated in animals fed with dietary green and dried plants, their mixtures, coniferous and herbal flour of various composition, plant extracts, in particular essential oils, and phytobiotic complexes enriched with microelements and probiotics (N.A. Tabakov et al., 2008). The main benefit of phytogenic additives in livestock breeding is due to an improved feed digestibility, antimicrobial efficacy, the replacement of feed antibiotics, and growth stimulation. Their anti-inflammatory effect, better feed conversion and higher feed intake by animals are also noted (L.S. Ignatovich, 2017). Immune modulating plant-born fodder supplements have a significant effect on animal and poultry health and performance characteristics (B. Kiczorowska et al., 2017). High profitability of organic food production and animal and people wellness as a world trend are also the factors determining the relevance of the development of highly effective phytobiotics and their use in livestock and poultry farming.

Keywords: phytobiotics, probiotic, feed antibiotics, animal feeding, cattle, pigs, poultry, productivity, homeostasis.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Akhmedkhanova R.R., Gamidov N.R. Problemy razvitiya APK regiona, 2010, 1(1): 73-77 (in Russ.).
  2. Bushov A., Kurmanaeva V. Ptitsevodstvo, 2012, 1: 31-33 (in Russ.).
  3. Gheisar M.M., Kim I.H. Phytobiotics in poultry and swine nutrition — a review. Ital. J. Anim. Sci., 2018, 17(1): 92-99 CrossRef
  4. Swiatkiewicz S., Arczewska-Wtosek A., Józefiak D. Application of microalgae biomass in poultry nutrition. World’s Poult. Sci. J., 2015, 71: 663-672 CrossRef
  5. Windisch W., Schedle K., Plitzner C., Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 2008, 86(Suppl. 14): 140-148 CrossRef
  6. Wegener H.C. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol., 2003, 6(5): 439-445 CrossRef
  7. Hao H., Cheng G., Iqbal Z., Ai X., Hussain H.I., Huang L., Dai M., Wang Y., Liu Z., Yuan Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol., 2014, 5: 288 CrossRef
  8. Windisch W., Kroismayr A. The effect of phytobiotics on performance and gut function in monogastrics. Biomin World Nutrition Forum. 2007. Rezhim dostupa: https://en.engormix.com/feed-machinery/articles/phytobiotics-on-performance-gut-function-in-monogastrics-t33528.htm. Data obrashcheniya: 07.08.2018.
  9. Castillo-López R.I., Gutiérrez-Grijalva E.P., Leyva-López N., López-Martínez L.X., Heredia J.B. Natural alternatives to growth-promoting antibiotics (GPA) in animal production. J. Anim. Plant Sci., 2017, 27(2): 349-359.
  10. Juliano C., Mattana A., Usai M. Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J. Essent. Oil Res., 2000, 12(4): 516-522 CrossRef
  11. Faleiro M.L., Miguel M.G., Ladeiro F., Venancio F., Tavares R., Brito J.C., Figueiredo A.C., Barroso J.G., Pedro L.G. Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett. Appl. Microbiol., 2002, 36(1): 35-40 CrossRef
  12. McGimpsey J.A., Douglas M.H., Van Klink J.L., Beauregard D.A., Perry N.B. Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Frag. J., 1994, 9(6): 347-352 CrossRef
  13. Marino M., Bersani C., Comi G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J. Food Protect., 1999, 62(9): 1017-1023 CrossRef
  14. Delaquis P.J., Stanich K., Girard B., Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol., 2002, 74(1-2): 101-109 CrossRef
  15. Jeroch H., Kozlowski K., Jeroch J., Lipinski K., Zdunczyk Z., Jankowski J. Efficacy of the phytogenic (Papaveraceae) additive Sangrovit® in growing monogastric animals. Züchtungskunde, 2009, 81(4): 279-293.
  16. Si W., Gong J., Tsao R., Zhou T., Yu H., Poppe C., Johnson R., Du Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol., 2006, 100: 296-305 CrossRef
  17. Burt S. Essential oils: their antibacterial properties and potential applications in foods — a review. Int. J. Food Microbiol., 2004, 94(3): 223-253 CrossRef
  18. Dorman H.J.D., Deans S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2): 308-316 CrossRef
  19. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils — a review. Food Chem. Toxicol., 2008, 46(2): 446-475 CrossRef
  20. Ait-Ouazzou A., Cherrat L., Espina L., Lorán S., Rota C., Pagán R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov. Food Sci. Emerg., 2011, 12(3): 320-329 CrossRef
  21. Adaszynska-Skwirzynska M., Szczerbinska D. Use of essential oils in broiler chicken production — a review. Ann. Anim. Sci., 2017, 17(2): 317-335 CrossRef
  22. Kiczorowska B., Samolinska W., Al-Yasiry A.R.M., Kiczorowski P., Winiarska-Mieczan A. The natural feed additives as immunostimulants in monogastric animal nutrition — a review. Ann. Anim. Sci., 2017, 17(3): 605-625 CrossRef
  23. Friedman M., Henika P.R., Mandrell R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enteric. J. Food Protect., 2002, 65(10): 1545-1560 CrossRef
  24. Konca Y., Cimen B., Yalcin H., Kaliber M., Beyzi S. Effect of hempseed (Cannabis sativa sp.) inclusion to the diet on performance, carcass and antioxidative activity in Japanese quail (Coturnix coturnix japonica). Korean J. Food Sci. An., 2014, 34(2): 141-150 CrossRef
  25. Skandamis P., Koutsoumanis K., Fasseas K., Nychas G.-J.E. Inhibition of oregano essential coil and EDTA on Escherichia coli O157: H7. Ital. J. Food Sci., 2001, 13(1): 65-75.
  26. Carson C.F., Mee B.J., Riley T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob. Agents Ch., 2002, 46(6): 1914-1920 CrossRef
  27. Sikkema J., de Bont J.A., Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. R., 1995, 59: 201-222.
  28. Ultee A., Kets E.P.W., Alberda M., Hoekstra F.A., Smid E.J. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol., 2000, 174(4): 233-238 CrossRef
  29. Ultee A., Bennink M.H.J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microb., 2002, 68(4): 1561-1568 CrossRef
  30. Sikkema J., De Bont J.A.M., Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem., 1994, 269(11): 8022-8028.
  31. Cox S.D., Mann C.M., Markham J.L., Bell H.C., Gustafson J.E., Warmington J.R., Wyllie S.G. The mode of antimicrobial action of essential oil of Melaleuca alternifola (tea tree oil). J. Appl. Microbiol., 2000, 88(1): 170-175 CrossRef
  32. Ultee A., Kets W.E.P., Smid E.J. Mechanism of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microb., 1999, 65(10): 4606-4610.
  33. Davidson P.M. Chemical preservatives and natural antimicrobial compounds. In: Food microbiology fundamentals and frontiers. M.P. Doyle, L.R. Beuchat, T.J. Montville (eds.). ASM Press, NY, 1997: 520-556 CrossRef
  34. Nikolaev S.I., Melikhov V.V., Frolova M.V. Vestnik Rossiiskoi sel'skokhozyaistvennoi nauki, 2009, 2: 68 (in Russ.).
  35. Sukhanova S.F., Azaubaeva G.S. Veterinarnyi vestnik Kurganskoi GSKHA, 2015, 1: 55-59 (in Russ.).
  36. Juliani H.R., Koroch A.R., Simon J.E. Chemical diversity of essential oils of Ocimum species and their associated antioxidant and Antimicrobial Activity. In: Essential oils and aromas: green extractions and applications. F. Chemat, V.K. Varshney, K. Allaf (eds.). Dehradun, India, 2009.
  37. Upadhaya S.D., Kim S.J., Kim I.H. Effects of gel-based phytogenic feed supplement on growth performance, nutrient digestibility, blood characteristics and intestinal morphology in weanling pigs. J. Appl. Anim. Res., 2016, 44(1): 384-389 CrossRef
  38. Mohiti-Asli M., Ghanaatparast-Rashti M. Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J. Appl. Anim. Res., 2017, 45(1): 603-608.
  39. Shapiro S., Guggenheim B. Inhibition of oral bacteria by phenolic compounds Part 1: QSAR analysis using molecular connectivity. Quant. Struct.-Act. Relat., 1998, 17(4): 327-337 CrossRef
  40. Delaquis P.J., Stanich K., Girard B., Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol., 2002, 74(1-2): 101-109 CrossRef
  41. Molchanov A.A., Zhukova I.A., Antipin S.L. Nauchnyi vestnik L'vovskogo natsional'nogo universiteta veterinarnoi meditsiny i biotekhnologii im. S.Z. Gzhitskogo, 2016, 18(1-3): 76-81 (in Russ.).
  42. Egorov I.A. Ptitsevodstvo, 2014, 6: 22-24 (in Russ.).
  43. Khusnutdinov B., Gumarova G. Ptitsevodstvo, 2009, 10: 26-27 (in Russ.).
  44. Kazachkova N.M. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Innovatsionnye tekhnologii v obrazovanii i nauke» [Proc. Int. Conf. “Innovative technologies in education and science”]. Cheboksary, 2017: 14-16 (in Russ.).
  45. Terent'ev V.I., Anikienko T.I. Vestnik KrasGAU, 2011, 5: 163-166 (in Russ.).
  46. Tabakov N.A., Kozina E.A., Ki-yu-an N.A., Ryabinina L.A. Kormlenie sel'skokhozyaistvennykh zhivotnykh i kormoproizvodstvo, 2008, 6: 50-55 (in Russ.).
  47. Yaroshevich M.I., Vecher N.E. Trudy BGU, 2010, 4(2): 1-12 (in Russ.).
  48. Franciosini M.P., Casagrande-Proietti P., Forte C., Beghelli D., Acuti G., Zanichelli D., dal Bosco A., Castellini C., Trabalza-Marinucci M. Effects of oregano (Origanum vulgare L.) and rosemary (Rosmarinus officinalis L.) aqueous extracts on broiler performance, immune function and intestinal microbial population. J. Appl. Anim. Res., 2016, 44(1): 474-479 CrossRef
  49. Ignatovich L.S. Dal'nevostochnyi agrarnyi vestnik, 2017, 2(42): 75-81 CrossRef (in Russ.).
  50. Singh J., Sethi A.P.S., Sikka S.S., Chatli M.K., Kumar Pawan. Effect of cinnamon (Cinnamomum cassia) powder as a phytobiotic growth promoter in commercial broiler chickens. Anim. Nutr. Feed Techn., 2014, 14(3): 471-479 CrossRef
  51. Ahmed T.S., Yang C.-J. Effects of dietary Punica granatum L. by-products on performance, immunity, intestinal and fecal microbiology, and odorous gas emissions from excreta in broilers. J. Poul. Sci., 2017, 54: 157-166 CrossRef
  52. Al-Yasiry A.R.M., Kiczorowska B., Samoli?ska W., Kowalczuk-Vasilev E., Kowalczyk-Pecka D. The effect of Boswellia serrata resin diet supplementation on production, hematological, biochemical and immunological parameters in broiler chickens. Animal, 2017, 11(11): 1890-1898 CrossRef
  53. Udintsev S.N., Zhilyakova T.P., Mel'nikov D.P. Svinovodstvo, 2010, 5: 18-21 (in Russ.).
  54. Farnieva K.Kh. Effektivnost' introduktsii i perspektivy ispol'zovaniya ekhinatsei purpurnoi (Echinacea purpurea (L.) Moench) v usloviyakh RSO-Alaniya. Avtoreferat kandidatskoi dissertatsii [Introduction and use of Echinacea purpurea (L.) Moench in Alania. PhD Thesis]. Vladikavkaz, 2015 (in Russ.).
  55. Khmyrov A., Fat'yanov A., Gorshkov G. Zhivotnovodstvo Rossii, 2012, 9: 16-17 (in Russ.).
  56. Kushniruk T.N. Intensivnost' rosta, sokhrannost', gematologicheskie i immunologicheskie pokazateli u ptits, potreblyavshikh dobavki ekhinatsei k kormu. Avtoreferat kandidatskoi dissertatsii [Growth, preservation, hematological and immunological indicators in poultry fed with dietary Echinacea. PhD Thesis]. Belgorod, 2008 (in Russ.).
  57. Saeed M., Abd El-Hack M.E., Alagawany M., Arain M.A., Arif M., Mirza M.A., Naveed M., Chao S., Sarwar M., Sayab M., Dhama K. Chicory (Cichorium intybus) Herb: chemical composition, pharmacology, nutritional and healthical applications. Int. J. Pharmacol., 2017, 13(4): 351-360 CrossRef
  58. Lantseva N.N., Martyshchenko A.E., Shvydkov A.N., Ryabukha L.A., Smirnov P.N., Kotlyarova O.V., Chebakov V.P. Fundamental'nye issledovaniya, 2015, 2: 1417-1423 (in Russ.).
  59. Nekrasov R.V., Chabaev M.G., Ushakova N.A., Pravdin V.G., Kravtsova L.Z. Izvestiya Orenburgskogo GAU, 2012, 3: 225-228 (in Russ.).
  60. Ryzhov V.A., Ryzhova E.S., Korotkii V.P., Zenkin A.S., Marisov S.S. Nauchno-metodicheskii elektronnyi zhurnal Kontsept, 2015, 13: 3236-3240 (in Russ.).
  61. Komarova Z.B., Pilipenko D.N., Ivanov S.M. IzvestiyaNizhnevolzhskogoagrouniversitetskogokompleksa: naukaivyssheeprofessional'noeobrazovanie, 2011, 3: 1-5 (in Russ.).
  62. Laptev G.Yu., Bol'shakov V.N., Soldatova V.V. Sel'skokhozyaistvennye vesti, 2012, 1: 24 (in Russ.).
  63. Duborezov V., Romanov V., Nekrasov R. Zhivotnovodstvo Rossii, 2013, Spetsvypusk: 38-40 (in Russ.).
  64. Okolelova T., Laptev G., Bol'shakov V. Effektivnost' Provitola v kombikormakh dlya kur. Ptitsevodstvo, 2014, 1: 12-14.
  65. Radaelli M., Parraga da Silva B., Weidlich L., Hoehne L., Flach A., da Costa L.A.M.A., Ethur E.M. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Braz. J. Microbiol., 2016, 47(2): 424-430 CrossRef
  66. Lopes I., Suika E., Lopes S., N'eto R., Rodriges A., Uspeshnyi A. Kombikorma, 2016, 1: 85-87 (in Russ.).
  67. Egorov I., Egorova T., Rozanov B., Marechek E. Ptitsevodstvo, 2012, 1: 17-20 (in Russ.).
  68. Khaziev D.D. Vestnik BGAU, 2013, 3: 79-81 (in Russ.).
  69. Khaziev D.D. Izvestiya Orenburgskogo GAU, 2013, 5: 150-153 (in Russ.).
  70. Zhirnova O.V., Gamko L.N., Shepelev S.I. Zootekhniya, 2016, 5: 26-27 (in Russ.).
  71. Sukhanova S.F. Vestnik APK Stavropol'ya, 2017, 2: 109-119 (in Russ.).
  72. Sukhanova S.F., Azaubaeva G.S. Vestnik Altaiskogo GAU, 2014, 12: 95-99 (in Russ.).
  73. Tolstopyatov M.V., Salomatin V.V., Kalinina E.A. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie, 2013, 4: 1-4 (in Russ.).
  74. Afanas'ev G.D., Popova L.A., Komarchev A.S., Trepak Zh.G. Ptitsa i ptitseprodukty, 2014, 5: 62-64 (in Russ.).

 

back