UDC 636.082:573.6.086.83:57.08

doi: 10.15389/agrobiology.2015.4.420eng


G.P. Malenko1,2, A.V. Komissarov3, O.I. Stepanov1, G.Yu. Kosovskii1

1Center for Experimental Embryology and Reproductive Biotechnology, Federal Agency of Scientific Organizations, str. 4, 12, ul. Kostyakova, Moscow, 127422 Russia,
e-mail galina_malenko@mail.ru;
2All-Russian Research Institute of Agricultural Biotechnology, Federal Agency of Scientific Organizations, 42, ul. Timiryazevskaya, Moscow, 127550 Russia;
3Maternity Hospital № 17, 22, ul. 800-letiya Moskvy, Moscow, 127247 Russia

Supported by LLC «Bioline Pharmtorg» (Moscow)

Received August 21, 2014

The review is dedicated to one of the relevant and widely discussed topics of modern biotechnology, namely cloning of mammals. Particularly, the success and problems of the somatic nuclear transfer (SCNT) are discussed herein. The advantages and disadvantages of a commonly used SCNT and zona-free modification are compared based on special publications and the data obtained in our experiments. The most promising targets for the SCNT are reproductive cloning, therapeutic cloning and fundamental science. Conservation of rare and endangered species is also in focus. Nevertheless, to date the cloning application is still relatively limited. One of the reasons is a low yield of healthy offspring in mammals, for example, average yield in cattle is about 9 % of cloned embryo transfers result in birth of healthy offspring. It is assumed that deviations in the development of cloned fetuses are caused by disorders in genomic reprogramming of a somatic cell nucleus, which results in significant disturbance of gene expression particularly in placenta. Even though there are several practical techniques that allow to increase effectiveness of SCNT, reprogramming of the nucleus demands further study as one of the fundamental problems of developmental biology. Second problem that hinders practical application of SCNT method is complexity of the conventional technique, which was introduced about 30 years ago by S.M. Willadsen (1986). Since then the technique has been applied almost without any variations. At the same time significant progress has been achieved in the so called zona-free nuclear thansfer method (zona-free NT), where oocytes are freed from zona pellucida before enucleation. This method was successfully applied for the first time by T.T. Peura et al. (1998). They used blastomeres of bovine embryo for electrofusion. The method was also effective for creation of cloned embryos of pig (P.J. Booth, 2001), sheep (T.T. Peura, 2003), cow (P.J. Booth et al., 2001), horse (C. Galli et al., 2003) using somatic cells. We have improved zona-free NT method for cattle embryo cloning (G.P. Malenko et al., 2006). In the available publications there are no references about zona-free NT use by other researches in Russia while worldwide it is considered more simple, effective and reproducible method compared to a conventional one (I. Lagutina с соавт., 2007; B. Oback с соавт., 2007). Preparation of cytoplasts by enucleation of zona-free oocytes can be carried out without fluorescent dyes with effectivness of 95-100 % and preservation of 96-97 % of ooplasm volume (M.I. Procofiev et al., 2007). Electrofusion rate of zona-free cytoplasts and somatic cells is 95-100 % (I. Lagutina et al., 2007; G.P. Malenko et al., 2007) compared to 60-70 % achieved during conventional cloning (I. Lagutina et al., 2007). Blastocyst yield is equal or higher then yield produced by the conventional method. Embryo transfer results are comparable for both methods. Zona-free NT method may further increase the output of cloned embryos and offspring of the farm animals due to the simplicity and high effectiveness. Since the unique gene combinations of elite bulls’ genotypes can not been copied by natural reproduction, their cloning is promising, particularly by means of zona-free NT—SCNT. SCNT application also seems to be the most prospective in animal transgenesis.

Keywords: somatic cell nuclear transfer, zona-free method, enucleation, electrofusion, farm animals.


Full article (Rus)

Full text (Eng)



  1. Illmensee K., Hoppe P.C. Nuclear transplantation in Mus musculus: Developmental potential of nuclei from preimplantation embryos. Cell, 1981, 23: 9-18 CrossRef
  2. Willadsen S.M. Nuclear transplantation in sheep embryos. Nature, 1986, 320: 63-65CrossRef
  3. Prather R.S., Barnes F.L., Sims M.M., Robl J.M., Eyestone W.H., First N.L. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol. Reprod., 1987, 37: 859-866 CrossRef
  4. Prather R.S., Sims M.M., First N.L. Nuclear transplantation in early pig embryos. Biol. Reprod., 1989, 41: 414-418 CrossRef
  5. Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H.S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385: 810-813 CrossRef
  6. Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Ponce de Leon A., Robl J.M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280: 1256-1258 CrossRef
  7. Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J.-ya., Doguchi H., Yasue H., Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282: 2095-2098 CrossRef
  8. Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, 394: 369-374.
  9. Baguisi A., Behboodi E., Melican D.T., Pollock J.S., Destrempes M.M., Cammuso C., Williams J.L., Nims S.D., Porter C.A., Midura P., Palacios M.J., Ayres S.L., Denniston R.S., Hayes M.L., Ziomek C.A., Meade H.M., Godke R.A., Gavin W.G., Overstrom E.W., Echelard Y. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 1999, 17: 456-461.
  10. Betthauser J., Forsberg E.G., Augenstein M., Childs L., Eilertsen K., Enos J., Forsythe T., Golueke P., Jurgella G., Koppang R., Lesmeis ter T., Mallon K., Mell G., Misica P., Pace M., Pfister-Genskow M., Strelchenko N., Voelker G., Watt S., Thompson S., Bishop M. Production of cloned pigs from in vitro systems. Nat. Biotechnol., 2000, 18: 1055-1059 CrossRef
  11. Polejaeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., Colman A., Campbell K.H.S. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407: 86-90CrossRef
  12. Chesné P., Adenot P.G., Viglietta C., Baratte M., Boulanger L., Ren-
    ard J.P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol., 2002, 20: 366-369 CrossRef
  13. Galli C., Lagutina I., Crotti G., Colleoni S., Turini P., Ponderato N., Duchi R., Lazzari G. A cloned horse born to its dam twin. Nature, 2003, 424: 635.
  14. Niemann H., Kues W.A. Transgenic farm animals: an update. Reprod. Fertil. Dev., 2007, 19: 762-770 CrossRef
  15. Bressan F.F., Miranda M.S., Bajgelman M.C., Perecin F., Mesquita L.G., Fantinato-Neto P., Merighe G.F.K., Strauss B.E., Meirelles F.V. Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in vitro developmental potential after nuclear transfer. In Vitro Cell Dev. Biol. Anim., 2013, 49: 250-259 CrossRef
  16. Monzani P.S., Sangalli J.R., de Bem T.H., Bressan F.F., Fantinato-Ne-
    to P., Pimentel J.R.V., Birgel-Junior E.H., Fontes A.M., Covas D.T., Meirelles F.V. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. Genet. Mol. Res., 2013, 12(AOP) CrossRef
  17. Hauschild J., Petersen B., Santiago Y., Bressan F.F., Fantinato-Ne-
    to P., Pimentel J.R.V., Birgel-Junior E.H., Fontes A.M., Covas D.T., Meirelles F.V. Efficient generation of a biallelic knockout in pig using zinc-finger nucleases. PNAS USA, 2011, 108: 12013-12017 CrossRef
  18. Niemann H., Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod. Domest. Anim., 2012, 47(Suppl. 5): 2-10 CrossRef
  19. Kragh P.M., Nielsen A.L., Li J., Yutao Du, Lin Lin, Schmidt M., Bøgh I.B.,  Holm I.E., Jakobsen J.E., Johansen M.G., Purup S., Bolund L., Vajta G. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res., 2009, 18: 545-558 CrossRef
  20. Renner S., Fehlings C., Herbach N., Hofmann A., von Waldthausen D.C., Kessler B., Ulrichs K., Chodnevskaja I., Moskalenko V., Amselgruber W., Goke B., Pfeifer A., Wanke R., Wolf E. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose dependent insulinotropic polypeptide function. Diabetes, 2010, 59: 1228-1238 CrossRef
  21. Humpherys D., Eggan K., Akutsu H., Friedman A., Hochedlinger K., Yanagimachi R., Lander E.S., Golub T.R., Jaenisch R. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. PNAS USA, 2002, 99: 12889-12894 CrossRef
  22. Chavatte-Palmer P., Camous S., Jammes H., Le Cleach N, Guillom-
    ot M., Lee R.S.F. Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta, 2012, 33(Suppl): S99-S104 CrossRef
  23. Akagi S., Matsukawa K., Mizutani E., Fukunari K., Kaneda M., Watanabe S., Takashi S. Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J. Reprod. Dev., 2011, 57: 120-126 CrossRef
  24. Jafarpour F., Hosseini S.M., Hajian M., Forouzanfar M., Ostadhosseini S., Abedi P., Gholami S., Ghaedi K., Gourabi H., Shahverdi A.H., Taghi Vosough A.D., Nasr-Esfahani M.H. Somatic cell-induced hyperacetylation, but not hypomethylation, positively and reversibly affects the efficiency of in vitro cloned blastocyst production in cattle. Cellular Reprogramming, 2011, 13: 483-493 CrossRef
  25. Lee M.-H., Kim S.-W., Lee H.-G., G.-S., Yang B.-C., Kim N.-H., Kim D.-H. Trichostatin A promotes the development of bovine somatic cell nuclear transfer embryos. J. Reprod. Dev., 2011, 57: 34-4 2CrossRef
  26. Su J., Wang YLi Y., Li R., Qian Li, Wu Y., Quan F., Liu J., Guo Z., Zhang Y. Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos. PLoS ONE, 2011, 6: e23805 CrossRef
  27. Wang Y., Su J., Wang L., Xu W., Quan F., Liu J., Zhang Y. The effects of 5-aza-2¢- deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogram., 2011, 13: 97-306 CrossRef
  28. Oh H.J., Lee T.H., Lee J.H., Lee B.C. Trichostatin A improves preimplantation development of bovine cloned embryos and alters expression of epigenetic and pluripotency genes in cloned blastocysts. J. Vet. Med. Sci., 2012, 74: 1409-1415 CrossRef
  29. Liu J., Wang Y., Su J., Xu W., Quan F., Liu J., Zhang Y. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer. Reprod. Domest. Anim., 2013, Jan 16 CrossRef
  30. Peura T.T., Lewis I.M., Trounson A.O. The effect of recipient oocyte volume on nuclear transfer in cattle. Mol. Reprod. Dev., 1998, 50: 185-191 CrossRef
  31. Booth P.J., Tan S.J., Holm P., Callesen H. Application of the zona-free manipulation technique to porcine somatic nuclear transfer. Cloning Stem Cells, 2001, 3: 191-197 CrossRef
  32. Peura T.T. Improved in vitro development rates of sheep somatic nuclear transfer embryos by using a reverse-order zona-free cloning method. Cloning Stem Cells, 2003, 5: 13-24 CrossRef
  33. Peura T.T., Vajta G. A comparison of established and new approaches in ovine and bovine nuclear transfer. Cloning Stem Cells, 2003, 5: 257-277 CrossRef
  34. Booth P.J., Tan S.J., Reipurth R., Holm P., Callesen H. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique. Cloning Stem Cells, 2001, 3: 139-150 CrossRef
  35. Peura T.T., Lane M., Vajta G., Trounson A.O. Cloning of bovine embruos from vitrified donor blastomeres. J. Reprod. Fertil., 1999, 116: 95-101 CrossRef
  36. Peura T.T., Lane M., Levis I., Trounson A.O. Development of bovine embryo-derived clones after increasing rounds of nuclear recycling. Mol. Reprod. Dev., 2001, 58: 384-389 CrossRef
  37. Oback B., Wells D.N. Cloning cattle. Cloning Stem Cells, 2003, 5: 243-256 CrossRef
  38. Oback B., Wiersema A.T., Gaynor P., Laible G., Tucker F.C., Oliver J.E., Miller A.L., Troskie H.E., Wilson K.L., Forsyth J.T., Berg M.C., Cockrem K., McMillan V., Tervit H.R., Wells D.N. Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning Stem Cells, 2003, 5: 3-12 CrossRef
  39. Malenko G.P., Prokof'ev M.I., Pinyugina M.V., Antipova T.A., Mezina M.N., Bukreev Yu.M. Izvestiya RAN. Seriya biologicheskaya, 2006, 3: 284-291.
  40. Oback B., Wells D.N. Cloning cattle: The methods in the madness. Adv. Exp. Med. Biol., 2007, 591: 30-57 CrossRef
  41. Lagutina I., Lazzari G., Duchi R., Turini P., Tessaro I., Brunetti D., Colleoni S., Crotti G., Galli C. Comparative aspects of somatic cell nuclear transfer with conventional and zona-free method in cattle, horse, pig and sheep. Theriogenology, 2007, 67: 90-98 CrossRef
  42. Bordignon V., Smith L.C. Telophase enucleation: an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer. Mol. Reprod. Dev., 1998, 49: 29-36 CrossRef
  43. Dominko T., Chan A., Simerly C., Luetjens C.M., Hewitson L., Martinovich C., Schatten G. Dynamic imaging of the metaphase II spindle and maternal chromosomes in bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. Bio. Reprod., 2000, 62: 150-154 CrossRef
  44. Jeon B.-G., Betts D.H., King W.A., Rho G.-J. In vitro developmental potential of nuclear transfer embryos cloned with enucleation methods using pre-denuded bovine oocytes. Reprod. Dom. Anim., 2011, 46: 1035-1042 CrossRef
  45. Li G.-P., White K.L., Bunch T.D. Review of enucleation methods and procedures used in animal cloning: State of the art. Cloning Stem Cells, 2004, 6: 5-13 CrossRef
  46. Kim E.Y., Park M.J., Park H.Y., Noh E.J., Noh E.H., Park K.S., Lee J.B., Jeong C.J., Riu K.Z., Park S.P. Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system. Cell Reprogram., 2012, 14: 305-311 CrossRef 
  47. Vajta G., Lewis I.M., Hyttel P., Thouas G.A., Trounson A.O. Somatic cell cloning without micromanipulators. Cloning, 2001, 3: 89-95 CrossRef
  48. Vajta G., Lewis I.M., Trounson A.O., Purup S., Maddox-Hyttel P., Schmidt M., Pedersen H.G., Greve T., Callesen H. Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency. Biol. Reprod., 2003, 68: 571-578 CrossRef
  49. Vajta G., Maddox-Hyttel P.,Skou C.T., Tecirlioglu R.T., Peura T.T., Lai L., Murphy C.N., Prather R.S., Kragh P.M., Callesen H. Highly efficient and reliable chemically assisted enucleation method for handmade cloning in cattle. Reprod. Fertil. Dev., 2005, 17: 791-797 CrossRef
  50. Galli C., Lagutina I., Vassiliev I., Duchi R., Lazzari G. Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells, 2002, 4: 189-196 CrossRef
  51. Li G.-P., Bunch T.D., White K.L., Rickords L., Liu Y., Sessions B.R. Denuding and centrifugation of maturing bovine oocytes alters oocyte spindle integrity and the ability of cytoplasm to support parthenogenetic and nuclear transfer embryo development. Mol. Reprod. Dev., 2006, 73: 446-451 CrossRef
  52. Malenko G.P., Stepanov O.I., Komissarov A.V., Antipova T.A., Pinyugina M.V., Prokofiev M.I. Efficiency of asynchronously in vitro-matured oocytes as recipients for nuclear transfer and of blind enucleation in zona-free bovine cloning. Cloning Stem Cells, 2009, 11: 287-292 CrossRef 
  53. Prokofiev M.I., Stepanov O.I., Komissarov A.V., Antipova T.A., Pinyugina M.V., Malenko G.P. Blind enucleation of oocytes is highly efficient in zona-free bovine cloning. Reprod. Fertil. Dev., 2007, 19: 156-157 CrossRef
  54. Gaynor P., Wells D.N., Oback B. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system. Med. Biol. Eng. Comput., 2005, 43: 150-154 CrossRef
  55. Carolan C., Lonergan P., Khatir H., Mermillod P. In vitroproduction of bovine embryos using individual oocytes. Mol. Reprod. Dev., 1996, 45: 145-150 CrossRef
  56. Hagemann L.J., Weilert L.L., Beaumont S.E., Tervit R.H. Development of bovine embryos in single in vitro production (SIVP) systems. Mol. Reprod. Dev., 1998, 51: 143-147 CrossRef
  57. Hagemann L.J., Beaumont S.E., Berg M., Donnison M.J., Ledg-
    ard A., Peterson A.J., Schurmann A., Tervit H.R. Development during single IVP of bovine oocytes from dissected follicles: interactive effects of estrous cycle stage, follicle size and atresia. Mol. Reprod. Dev., 1999, 53: 451-458 CrossRef CrossRef
  58. Vajta G., Peura T.T., Holm P., Paldi A., Greve T., Trounson A.O., Cal-
    lesen H. New method for culture of zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev., 2000, 55: 256-264 CrossRef
  59. Nagy A., Rossant J. Production and analysis of ES cell aggregation chimeras. In: Practical approach series: Gene targeting /A.L. Joyner (ed.). Oxford University Press, Oxford, 1993: 177-206.
  60. Wood S.A., Allen N.D., Rossant J., Auerbach A, Nagy A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature, 1993, 365: 87-89 CrossRef
  61. Lopes A., Ottosen L.D.M., Greve T., Callesen H. Microsensor oxygen measurements around in-vitro developing cattle embryos: preliminary observations. Theriogenology, 2003, 59: 345.
  62. Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS ONE, 2013, 8(2): e55941. Epub 2013 Feb 20 CrossRef