UDC 636.52/.58:636.083.62:591.1

doi: 10.15389/agrobiology.2015.4.431eng

HEAT STRESS IN POULTRY. II. METHODS AND TECHNIQUES FOR
PREVENTION AND ALLEVIATION (review)

V.I. Fisinin, A.Sh. Kavtarashvili

All-Russian Research and Technological Poultry Institute, Federal Agency of Scientific Organizations, 10, ul. Ptitsegradskaya, Sergiev Posad-11, Moscow Province, 141300 Russia,
e-mail fisinin@vnitip.ru, alexk@vnitip.ru

Received March 23, 2015

An adverse effect of heat stress in poultry depends on both the external factors such as diet, water supply, rearing technology, birds’ population density, air humidity and flow rate, etc., and the internal factors, particularly, poultry species and breed specificity, physiological conditions, etc. Herein, the approaches to prevention and alleviation of heat stress in poultry are summarized and discussed. Different strategies were proposed for lowering of body heat production and for better heat dissipation, thus maintaining productivity and product quality and minimizing losses for poultry farms. These strategies include the increase in energetic level of a diet in accordance with decrease in feed consumption due to stress (N.J. Daghir, 2009) and inclusion of higher (up to 4-5 %) levels of fat (B.L. Red, 1981; N. Usayran et al., 2001; A.A. Ghazalah et al., 2008); decrease by 2-4 % of dietary crude protein (Q.U. Zaman et al., 2008) and carbohydrate levels (metabolization of fat produces less heat than protein and carbohydrates) (N.A. Musharaf, J.D. Latshaw, 1999; N.J. Daghir, 2008); changes in amino acid profile of a diet (diets imbalanced in amino acids may increase heat production; moreover, requirements in lysine and sulfur-containing amino acids are much higher in heat stressed poultry) (R.M. Gous, T.R. Morris, 2005; S. Syafwan et al., 2011; O. Vjreck, M. Kirchgessner, 1980); supplementation with additional 250 ppm of vitamin C (M. Ciftci et al., 2005; A. Kavtarashvili, T. Kolokolnikova, 2010), 200 ppm of vitamin E (Z.Y. Niu et al., 2009; A.A. Rashidi et al., 2010), 8000 IU/kg of vitamin A (H. Lin et al., 2002), minerals or proper premix of vitamins and minerals (V.I. Fisinin et al., 2009), supplementation of feed or drinking water with electrolytes NaHCO3, KСl, CaCl2, NH4Cl (R.G. Teeter et al., 1985; T. Ahmad et al., 2005); pelleting of diets (R.M. Gous, T.R. Morris, 2005; A. Kavtarashvili, T. Kolokolnikova, 2010); special regimes of feeding (K. Hiramoto et al., 1995; M.H. Uzum, H.D. Oral Toplu, 2013) and intermitted lighting (A. Kavtarashvili, T. Kolokolnikova, 2010; D. Balnave, S.K. Muheereza, 1998); periodic (in 7-day periods) substitution of soda (NaHCO3) for 50-80 % of dietary salt (P.S. Silva et al., 1996; A. Kavtarashvili et al., 2010); feeding of mixture of ground mussel and lime (1:1) from separate feeders with simultaneous decrease in dietary Ca level; inclusion of dietary enzyme preparations (V.I. Fisinin et al., 1999) and probiotic strains of Lactobacillus (P.T. Lan et al., 2004); the use of special anti-stress additives and preparations (P. Surai et al., 2012; Р. Surai et al., 2013); moistening of enzyme-supplemented diets (H. Lin et al., 2006; M.A. Khoa, 2007); increase in air velocity in poultry houses up to 2.0-2.5 m/s (J. Donald, 2000); tunnel ventilation systems (M. Czarick, B.L. Tyson, 1989); systems of evaporative air cooling (J. Donald, 2000; E.S. Mailyan, 2007); the use of heat-insulating and light-reflective roof materials, sprinkling of roof with cold water (S. Yahav et al., 2004); 15-20 % decrease in stock density (T. Ahmad et al., 2006); a decreased litter thickness (to 3-5 cm) (Salah H.M. Esmail, 2001); decrease in any disturbing activity (vaccination, repopulation etc.) during the hottest hours; providing poultry with constant access to water including days when poultry is vaccinated via water; elimination of spray vaccines during heat stress (O. Mikhailovskaya et al., 2010); regular cleaning and disinfection of drinking water and drinking systems; acidification of drinking water (A. Kavtarashvili, 2013); regular refilling of drinking system with fresh and cold water; isolation and shading of water tanks and pipes exposed to direct sunlight; cooling of drinking water (S. Yahav et al., 1996); thermal training of embryos during 2nd half of embryogenesis (Y. Piestun et al., 2008) and 3-day chicks (S. Yahav et al., 2001; S. Yahav et al. 2004); genetic improvements in thermal tolerance (A.V. Miftahutdinov, 2011) including activated expression of naked neck gene Na and frizzle feather gene F (N. Deeb et al., 2001; M.V. Raju et al., 2004

Keywords: temperature, heat stress, poultry farming, productivity, methods of prevention and alleviation.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Kadim L.T., AI-Qamshui B.H.A., Mahgoub O., Ai-Marzooqi W., Johnson E.H. Effect of seasonal temperatures and ascorbic acid supplementation on performance of broiler chickens maintained in closed and open-sided houses. Int. J. Poult. Sci., 2008, 7: 655-660 CrossRef
  2. Abidin Z., Khatoon A. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World’s Poult. Sci. J., 2013, 69: 135-151 CrossRef
  3. Surai P.F., Fotina T.I. Physiological mechanisms of stress development in poultry industry. Animal Breeding Today, 2013, 6: 54-60.
  4. Teeter R.G., Smith M.O., Owens F.N., Arp S.C., Sangiah S., Breazdle J.E. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chickens. Poultry Science, 1985, 64: 1060-1064 CrossRef
  5. Borges S.A., Fischer Da Silva A.V., Majorka A., Hooge D.M., Cummings K.R. Physiological responses of broiler chicken to heat stress and electrolyte balance (sodium plus potassium minus chloride, milliequivalent per kilogram). Poult. Sci., 2004, 83: 1551-1558 CrossRef
  6. Attia Y.A., Hassan R.A., Qota M.A. Recovery from adverse effects of heat stress on slow-growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Tropical Animal Health and Production, 2009, 41: 807-818 CrossRef
  7. Garriga C., Hunter R.R., Amat C., Planas J.M., Mitchell M.A., More-
    to M. Heat stress increases apical glucose transport in the chicken jejunum. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(1): 195-201 CrossRef
  8. Kavtarashvili A.Sh. Ptitsevodstvo, 2012, 7: 13-17.
  9. Kavtarashvili A.Sh. Zhivotnovodstvo Rossii, 2012, 9: 13-14.
  10. Sahin K., Sahin N., Kucuk O., Hayirli A., Prasad A.S. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci., 2009, 88(10): 2176-2183 CrossRef
  11. Syafwan S., Kwakkelr P., Verstegen M.W.A. Heat stress and feeding strategies in meat-type chickens. World’s Poult. Sci. J., 2011, 67: 653-673 CrossRef
  12. Gous R.M., Morris T.R. Nutritional interventions in alleviating the effects of high temperatures in broiler production. World’s Poult. Sci. J., 2005, 61: 463-475 CrossRef
  13. Daghir N.J. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Information, 2009, 44: 6-15.
  14. Huwaida E.E. Malik, Rashid H.O. Suliaman, Ibrahim A. Yousif, Khalid M. Elamin. Effect of dietary protein level and strain on carcass characteristics of heat stressed broiler chicks. Agric. Biol. J. N. Am., 2013, 4(5): 504-511 CrossRef
  15. Temim S., Chagneau A., Peresson M., Tesseraud S. Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25 % protein diets. J. Nutr., 2000, 130(4): 813-819.
  16. Teeter R.G. Optimizing production of heat stressed broilers. Poultry Digest, 1994, 26: 10-24.
  17. Cheng T.K., Hambre M.X., Coon C.N. Responses of broilers to dietary protein levels and amino acid supplementation to low protein diets at various environmental temperatures. J. Appl. Poultry Res., 1997, 6: 18-33.
  18. Cheng T.K., Hamre M.X., Coon C.N. Effect of constant and cyclic environmental temperatures, dietary protein, and amino acid levels on broiler performance. J. Appl. Poultry Res., 1999, 8: 426-439 CrossRef
  19. Zaman Q.U., Mushtaq T., Nawaz H., Mirza M.A., Mahmood S., Ahmad T., Babar M.E., Mushtaq M.M.H. Effect of varying dietary energy and protein on broiler performance in hot climate. Animal Feed Science and Technology, 2008, 46: 302-312 CrossRef
  20. Ghazalah A.A., Abd-Elsamee M.O., Ali A.M. Influence of dietary energy and poultry fat on the response of broiler chicks to heat term. Int. J. Poult. Sci., 2008, 7(4): 355-359.
  21. Red B.L. Fat levels in layer feeds. Journal of the American Oil Chemists’ Society, 1981, 58: 306-309.
  22. Usayran N., Farran M.T., Awadallah H.H.O., Al-Hawi I.R., Asmar R.J., Ashkarian V.M. Effects of added dietary fat and phosphorus on the performance and egg quality of laying hens subjected to a constant high environmental temperature. Poult. Sci., 2001, 80: 1695-1701 CrossRef
  23. Njoku P.C., Nwazota A.O.U. Effect of dietary inclusion of ascorbic acid and palm oil on the performance of laying hens in a hot tropical environment. Br. Poult. Sci., 1989, 30: 831-840 CrossRef
  24. Musharaf N.A., Latshaw J.D. Heat increment as affected by protein and amino acid nutrition. World’s Poult. Sci. J., 1999, 55: 233-240 CrossRef
  25. Daghir N.J. Broiler feeding and management in hot climates. In: Poultry production in hot climates /N.J. Daghir (ed.). CABI, Oxfordshire, UK, 2008: 227-260.
  26. De Basilio V., Vilarino M., Yahav S., Picard M. Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poult. Sci., 2001, 80: 29-36 CrossRef
  27. Emmans G.C. Effective energy: a concept of energy utilization applied across species. Br.  J. Nutr., 1994, 71: 801-821 CrossRef
  28. Vjreck O., Kirchgessner M. Zum Erhaltungsbedarf on Energie und Rohprotein bei Legehenne. Arch. Teirernahr., 1980, 30(1): 10-12.
  29. Kuznetsov N. Aminokislotnoe i energeticheskoe pitanie myasnykh kur v usloviyakh zharkogo klimata. Kandidatskaya dissertatsiya. Sergiev Posad, 1987.
  30. Miles D.M., Branton S.L., Lott B.D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poult. Sci., 2004, 83: 1650-1654 CrossRef
  31. Yahav S. Ammonia affects performance and thermoregulation of male broiler chickens. Anim. Res., 2004, 53: 289-293 10.1051/animres:2004015
  32. Ciftci M., Ertas O.N., Guler T. Effects of vitamin E and vitamin C dietary supplementation on egg production and egg quality of laying hens exposed to a chronic heat stress. Revue de Medecine Veterinaire, 2005, 156: 107-111.
  33. Kavtarashvili A., Kolokol'nikova T. Zhivotnovodstvo Rossii, 2010, 5-6: 17-20.
  34. Sabah Elkheffi M.K., Mohammed Ahmed M.M., Abdel Gadir S.M. Effect of feed restriction and ascorbic acid supplementation on performance of broiler chicks reared under heat stress. Research Journal of Animal and Veterinary Sciences, 2008, 3: 1-8.
  35. Mckee J.S., Harrison P.C., Riskowski G.L. Effects of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal. Poult. Sci., 1997, 76: 1278-1286 CrossRef
  36. Niu Z.Y., Yan Q.L., Li W.C. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult. Sci., 2009, 88: 2101-2107 CrossRef
  37. Rashidi A.A., Gofrani F., Ivari Y., Khatibjoo A., Vakili R. Effect of dietary fat, vitamin E and zinc on immune response and blood parameters of broilers reared under heat stress. Research Journal of Poultry Science, 2010, 3: 32-38 CrossRef
  38. Asli M.M., Hosseini S.A., Lotfollahian H., Shariatmadari F. Effect of probiotics, yeast, vitamin E and vitamin C supplements on performance and immune response of laying hens during high environmental temperature. Int. J. Poult. Sci., 2007, 6: 895-900 CrossRef 
  39. Yardibi H., Turkay G. The effects of vitamin E on the antioxidant system, egg production, and egg quality in heat stressed laying hens. Turkish Journal of Veterinary and Animal Sciences, 2008, 32(5): 319-325. 
  40. Fisinin V.I., Surai P., Papazyan T. Ptitsevodstvo, 2009, 8: 10-14.
  41. Lin H., Wang L.F., Song J.L., Xie Y.M., Yang Q.M. Effect of dietary supplemental levels of vitamin A on egg production and immune responses of heat-stressed laying hens. Poult. Sci., 2002, 81: 458-465 CrossRef 
  42. Whitehead C.C., Keller T. An update on ascorbic acid in poultry. World’s Poult. Sci. J., 2003, 59: 161-184 CrossRef
  43. Sahin K., Sahin N., Sari M., Gursu M.F. Effects of vitamins E and A supplementation on lipid peroxidation and concentration of some mineral in broilers reared under heat stress (32 °C). Nutr. Res., 2002, 22: 723-731 CrossRef 
  44. Ahmad T., Sarwar M., Mahr-Un-Nisa, Ahsan-Ul-Haq, Zia-Ul-Hasan. Influence of varying sources of dietary electrolytes on the performance of broilers reared in a high temperature environment. Animal Feed Science and Technology, 2005, 20: 277-298 CrossRef
  45. Mikhailovskaya O., Medvedenko A., Stepanenko V. Temperaturnyi stress u kur nesushek v zharkii period goda [Temperature stress in laying hens at hot season]. Hy-Line International, 2010 (http://www.hyline.com).
  46. Nesheim M.C., Leach R.M., Zeigler T.R., Serafin J.A. Interrelationships between dietary levels of sodium, chloride and potassium. J. Nutr., 1964, 84: 361-366.
  47. Ahmad T., Sarwar M. Dietary electrolyte balance: implications in heat stressed broilers. World’s Poult. Sci. J., 2006, 62: 638-653 CrossRef
  48. Borges S.A., Fischer Da Silva A.V., Maiorka A. Acid-base balance in broilers. World’s Poult. Sci. J., 2007, 63(1): 73-81 CrossRef
  49. Kavtarashvili A.Sh., Kolokol'nikova T.N. RatsVetInform, 2010, 4(104): 13-19.
  50. Boulahsen A.A., Garlich J.D., Edens F.W. Calcium deficiency and food deprivation improve the response of chickens to acute heat stress. J. Nutr., 1993, 123: 98-105.
  51. Hiramoto K., Satoh K., Yano Y. Effect of diurnal fasting on broiler performance reared under summer condition. Japanese Poultry Science, 1995, 32: 169-176 CrossRef
  52. Uzum M.H., Oral Toplu H.D. Effects of stocking density and feed restriction on performance, carcass, meat quality characteristics and some stress parameters in broilers under heat stress. Revue Méd. Vét., 2013, 164(12): 546-554.
  53. Kavtarashvili A.Sh., Kolokol’nikova T.N. Feniks-Kus (Kazakhstan), 2010, 8: 11-18.
  54. Kavtarashvili A.Sh. Ptitsa i ptitseprodukty, 2007, 5: 45-47.
  55. Lott B.D. The effect of feed intake on body temperature and water consumption of male broilers during heat exposure. Poult. Sci., 1991, 70: 756-759 CrossRef
  56. Yahav S., Hurwitz S. Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poult. Sci., 1996, 75: 402-406 CrossRef 
  57. Balnave D., Myheereza S.K. Intermittent lighting and dietary sodium bicarbonate supplementation for laying hens at high temperatures. Australian Journal of Agricultural Research, 1998, 49: 279-284.  
  58. Silva P.S., Sousa F.M., Fuentas M.F. Influence of sodium bicarbonate on the performance of chickens reared under conditions of chronic high temperature in the period of 21-42 days. Proc. XX World’s Poultry Congr. New Delhi, India, 1996: 256.
  59. Zhang M., Wang D., Du R., Zhang W., Zhou S., Xie B. Effects of dietary chromium levels on performance and serum traits of broilers under heat stress. Acta Zoonutrimenta Sinica, 2002, 14: 5.
  60. Sahin K., Sahin N., Kucuk O. Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 deg C). Nutrition Research, 2003, 23: 225-238 CrossRef
  61. Fisinin V.I., Imangulov Sh.A., Kavtarashvili A.Sh. Povyshenie effektivnosti yaichnogo ptitsevodstva [How to increase efficiency of commercial egg production in poultry]. Sergiev Posad, 1999: 143.
  62. Lin H., Jiao H.C., Buyse J., Decuypere E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J., 2006, 62: 71-86 CrossRef
  63. Khoa M.A. Wet and coarse diets in broiler nutrition: development of the GI tract and performance. Dissertation prepared in Wageningen Institute of Animal Sciences, Wageningen, 2007: 141.
  64. Lan P.T., Sakamoto M., Benno Y. Effects of two probiotic Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol., 2004, 48(12): 917-929 CrossRef
  65. Surai P., Fotina T. Efektivne ptakhіvnitstvo (Ukraina), 2010, 8(68): 20-25.
  66. Markin Yu.V., Spiridonov D.N., Zevakova V.K., Polunina S.V. Kombikorma, 2011, 4: 59-60.
  67. Surai P., Fisinin V.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 4: 3-13 CrossRef, CrossRef
  68. Donald J. Getting the most from evaporative cooling systems in tunnel ventilated broiler houses. World Poultry, 2000, 16: 34-39.
  69. Czarick M., Tyson B.L. Design considerations for tunnel-ventilated broiler houses. ASAE paper No. 89-4527. ASAE, St. Joseph, MI 49085-9659, 1989.
  70. Mailyan E.S. Zooindustriya, 2007, 9: 8-13.
  71. Kavtarashvili A.Sh. RatsVetInform, 2011, 7(119): 9-11.
  72. Yahav S., Straschnow A., Luger D., Shinder D., Tanny J., Cohen S. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci., 2004, 83: 253-258 CrossRef
  73. Kavtarashvili A.Sh., Kolokol'nikova T.N. Metody profilaktiki. Materialy Mezhdunarodnogo veterinarnogo kongressa «Aktual'nye veterinarnye problemy v promyshlennom ptitsevodstve» [Proc. Int. Vet. Congress «Actual veterinary challenges in commercial poultry]. Moscow, 2013: 129-132.
  74. Holik V. Management of laying hens to minimize heat stress. Lohmann Information, 2009, 44(1): 16-29.
  75. Salah H.M. Esmail. Thermal influences on poultry. World Poultry, 2001, 17(3): 26-27.
  76. Kavtarashvili A. Ptitsevodstvo, 2013, 3: 17-25.
  77. Gutierrez W.M., Min W., Chang H.H. Effects of chilled drinking water on performance of laying hens during constant high ambient temperature. Asian Australasian Journal of Animal Sciences, 2009, 22(5): 694-699 CrossRef
  78. Piestun Y., Shinder D., Ruzal M., Halevy O., Brake J., Yahav S. Thermal manipulations during broiler embryogenesis: effect on the acquisition of thermotolerance. Poult. Sci., 2008, 87: 1516-1525 CrossRef
  79. Yahav S., Mcmurthy J.P. Thermotolerance acquisition in broiler chickens by temperature conditioning early in life — The effect of timing and ambient temperature. Poult. Sci., 2001, 80: 1662-1666 CrossRef
  80. Yahav S., Sasson R., Shinder D. The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. J. Therm. Biol., 2004, 29: 245-250 CrossRef 
  81. Tzschentke B., Plagemann A. Imprinting and critical periods in early development. World’s Poult. Sci. J., 2006, 62: 626-637 CrossRef
  82. Tzschentke B. Attainment of thermoregulation as affected by environmental factors. Poult. Sci., 2007, 86: 1025-1036 CrossRef
  83. Miftakhutdinov A.V. Uchenye zapiski UO Vitebskaya ordena «Znak Pocheta» gosudarstvennaya akademiya veterinarnoi meditsiny, 2011, 47(2/1): 188-190.
  84. El-Gendy E., Washburg K.W. Genetic variation in body temperature and its response to short-term acute heat stress in broilers. Poult. Sci., 1995, 74: 225-230 CrossRef
  85. Gowe R.S., Fairfull R.W. Breeding for resistance to heat stress. In: Poultry production in hot climates /N.J. Daghir (ed.). CABI, Oxfordshire, UK, 2008: 13-30.
  86. Deeb N., Cahaner A. Genotype by environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus non selected parents under normal and high ambient temperatures. Poult. Sci., 2002, 81: 293-330.
  87. Franco-Jimenez D.J., Scheideler S.E., Kittok R.J., Brown-Brandl T.M., Robeson L.R., Taira H., Beck V.V. Differential effects of heat stress in there strains of laying hens. J. Appl. Poultry Res., 2007, 16(4): 628-634 CrossRef
  88. Melesse A., Maak S., Pingel H., Lengerken G.V. Assessing the thermo-tolerance potentials of five commercial layer chicken genotypes under long-term heat stress environment as measured by their performance traits. J. Anim. Prod. Adv., 2013, 3(8): 254-264 CrossRef
  89. Deeb N., Cahaner A. Genotype-by-temperature interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poult. Sci., 2001, 80: 695-702.  
  90. Raju M.V., Sunder G.S., Chawak M.M., Rao S.V., Sadagopan V.R. Response of naked neck (Nana) and normal (nana) broiler chickens to dietary energy levels in a subtropical climate. Br. Poult. Sci., 2004, 45: 186-193 CrossRef
  91. Merat P. Potential usefulness of the Na (naked neck) gene in poultry production. World’s Poult. Sci. J., 1986, 42: 124-142 CrossRef 
  92. Yunis R., Cahaner A. The effects of the naked neck (Na) and frizzle (F) genes on growth and meat yield of broilers and their interactions with ambient temperatures and potential growth rate. Poult. Sci., 1999, 78: 1347-1352 CrossRef

 

back