doi: 10.15389/agrobiology.2023.3.494eng

UDC: 633.32:577.21

Financed from the federal budget for the implementation of the state task (project No. 0442-2019-0001АААА-А19-119122590053-0)



I.A. Klimenko , A.O. Shamustakimova, V.A. Dushkin, Yu.M. Mavlyutov, A.A. Antonov

Williams Federal Science Center for Fodder Production and Agroecology, korp. 3, Nauchnyi gorodok, Lobnya, Moscow Province, 141055 Russia, e-mail (✉ corresponding author),,,,

Aklimenko I.A.
Mavlyutov Yu.M.
Shamustakimova A.O.
Antonov A.A.
Dushkin V.A.

Final revision received May 3, 2023
Accepted May 31, 2023

Molecular-genetic certification is a powerful strategies and efficient addition to the traditional methods of variety testing and agricultural crops identification. Russia, as well as a world in a whole, introduces the current DNA technologies in the breeding programs, in a variety registration process and in a system of seed production. However, the traditional approaches, based on observation and recording the morphological characters, are the prevalent now for the forage crops. It influences negatively on efficiency of selection, increases the terms and coasts of the new varieties development, registration and breeders rights protection. In this paper, the results of creation a system for identification and genetic certification of Russian red clover cultivars on the base of SSR and SRAP-markers are submitted for the first time. The seeds of 15 domestic varieties from gene pool collection of Federal Williams Research Center of Forage Production and Agroecology and 6 accessions of foreign breeding from Vavilov All-Russian Institute of Plant Genetic Resources were used for investigations. The genome DNA was extracted from 7-day seedlings’ tissue. Bulk DNA samples were formed from 30 individual genotypes per each variety. We used basic SDS-method in own modifications. Quantity and quality of extracted DNA was analyzed by agarose gel electrophoresis and measurement of concentration and purity. The final concentration of DNA samples was 30 ng/ml. PCR amplification was performed using 35 SSR from the Red Clover Marker Database (, and 40 SRAP markers. A total of 476 PCR products were generated with SSR markers for 12 red clover varieties. A set of eight microsatellite loci was selected for identification the tested samples. With application of 40 SRAP markers, we selected 18 informative combinations for analysis of the red clover collection of 16 varieties. Total 812 PCR products were revealed and 85 (10.5 %) among them were determined as polymorphic. The set of 7 informative markers were identified for samples differentiation on the base of SRAP analysis. Unique varieties-specific DNA fragments were sequenced (Evrogen Lab company, Russia) for validation the results of analysis. Nucleotide sequences, identifying Russian red clover varieties Trifon, Mars, Topas, Atlant, Tetraploidniy VIK, Meteor, VIK 77, were included in the GenBank NCBI ( The data of DNA fingerprinting we used for development the molecular-genetic formulas representing microsatellite loci allele composition and polymorphism in exon and intron regions of genome. As a result of this study, 10 etalon genetic certificates were designed for Russian red clover varieties.

Keywords: forage crops, genetic diversity, SSR markers, SRAP markers, DNA polymorphism, genetic certification.



  1. Reid A., Kerr E.M. A rapid simple sequence repeat (SSR)-based identification method for potato cultivars. Plant Genetic Resources, 2007, 5(1): 7-13 CrossRef
  2. Cooke R.J., Reeves J.C. Plant genetic resources and molecular markers: variety registration in a new era. Plant Genetic Resources,2003, 1(2-3): 81-87 CrossRef
  3. Arens P., Mansilla C., Deinum D., Cavellini L., Moretti A., Rolland S., Schoot H., Calvache D., Ponz F., Collonnier C., Mathis R., Smilde D., Caranta C., Vosman B. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and Applied Genetics, 2010, 120: 655-664 CrossRef
  4. Wang J., Cogan N.O.I., Forster J.W. Prospects for applications of genomic tools in registration testing and seed certification of ryegrass varieties. Plant Breed, 2016, 135(4): 405-412 CrossRef
  5. Bonow S., Von Pinho E.V.R., Vieira M.G.C., Vosman B. Microsatellite markers in and around rice genes: applications in variety identification and DUS testing. CropScience,2009, 49(3): 880-886 CrossRef
  6. Matveeva T.V., Pavlova O.A., Bogomaz D.I., Demkovich A.E., Lutova L.A. Еkologicheskaya genetika,2011, IX(1): 32-44 (in Russ.).
  7. Korir N.K., Han J., Shangguan L., Wang Ch., Kayesh E., Shang Y., Fang J. Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology, 2012, 33(2): 111-125 CrossRef
  8. Tommasini L., Batley J., Arnold G.M., Cooke R.J., Donini P., Lee D., Law J.R., Lowe C., Moule C., Trick M., Edwards K.J. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theoretical and Applied Genetics, 2003, 106(6): 1091-1101 CrossRef
  9. Bhandary H.R., Bhanu A.N., Srivastava K., Singh M.N., Shreya, Hemantaranjan A. Assesment of genetic diversity in crop plants — an overview. Adv. Plants Agric. Res., 2017, 7(3): 279-286 CrossRef
  10. Jamali S.H., Cockram J., Hickey L.T. Insights into deployment of DNA markers in plant variety protection and registration. Theoretical and Applied Genetics, 2019, 132: 1911-1929 CrossRef
  11. Schlegel R. Hybrid breeding boosted molecular genetics in rye. Vavilov Journal of Genetics and Breeding, 2015, 19(5): 589-603 CrossRef
  12. Kolliker R., Enkerli J., Widmer F.Characterization of novel microsatellite loci for red clover (Trifolium pratense L.) from enriched genomic libraries. Molecular Ecology Notes,2006, 6: 50-53 CrossRef
  13. Noli E., Teriaca M.S., Sanguineti M.C., Conti S. Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat. Molecular Breeding, 2008, 22: 301-313 CrossRef
  14. Schulman A.H. Molecular markers to assess genetic diversity. Euphytica, 2007, 158: 313-321 CrossRef
  15. Sukhareva A.S., Kuluev B.R. Biomika, 2018, 10(1): 69-84 CrossRef (in Russ.).
  16. Varshney R.K., Graner A., Sorrels M.E. Genetic microsatellite markers in plants: features and applications. Trends in Biotechnology, 2005, 23(1): 48-55 CrossRef
  17. Dias P.M.B., Julier B., Sampoux J.P., Barre P., Dall’Agnol M. Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica, 2007, 160: 189-205 CrossRef
  18. Andersen J.R., Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8(11): 554-560 CrossRef
  19. Gupta P.K., Rustgi S. Molecular markers from the transcribed expressed region of the genome in higher plants. Functional & Integrative Genomics, 2004, 4(3): 139-162 CrossRef
  20. Ronning C.M., Stegalkina S.S., Ascenzi R.A., Bougri O., Hart A.L., Utterbach T.R., Vanaken S.E., Riedmuller S.B., White J.A., Cho J., Pertea G.M., Lee Y., Karamycheva S., Sultana R., Tsai J., Quackenbush J., Griffiths H.M., Restrepo S., Smart C.D., Fry W.E., van der Hoeven R., Tanksley S., Zhang P., Jin H., Yamamoto M.L., Baker B.J., Buell C.R. Comparative analysis of potato expressed sequence tag libraries. Plant Physiology, 2003, 131(2): 419-429 CrossRef
  21. Powell W., Machray G.C., Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1996, 1(7): 215-222 CrossRef
  22. Li G., Quiros C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461 CrossRef
  23. Rhouma H.B., Taski-Adukovic K., Zitouna N., Sdouga D., Milis D., and Trifi-Farah N. Assessment of the genetic variation in alfalfa genotypes using SRAP markers for breeding purposes. Chilean Journal of Agricultural Research, 2017, 77(4): 332-339 CrossRef
  24. Alghamdi S., Al-Faifi S., Migdadi H., Khan M., El-Harty E., Ammar M. Molecular diversity assessment using sequence related amplified polymorphism (SRAP) markers in Vicia faba L. International Journal of Molecular Sciences, 2012,13(12): 16457-16471 CrossRef
  25. Yousefi S., Saeidi H., Assadi M. Genetic diversity analysis of red clover (Trifolium pratense L.) in Iran using sequence related amplified polymorphism (SRAP) markers. Journal of Agricultural Science and Technology, 2018, 20(2): 373-386.
  26. Tsvetkov I.A., Ivanov A.N., Glazko V.I. Izvestiya TSKhA, 2006, 4: 155-159 (in Russ.).
  27. Vdovichenko L.D., Glazko V.I. ISSR-PCR markers in wheat variety passportization. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 3: 33-37 (in Russ.).
  28. Fedulova T.P., Fedorin D.N., Bogomolov M.A., Goleva G.G. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 2018, 3(58): 46-53 CrossRef (in Russ.).
  29. Kolobova O.S., Malyuchenko O.P., Shalaeva T.V., Shanina E.P., Shilov I.A., Alekseev Ya.I., Velishaeva N.S. Vavilovskiy zhurnal genetiki i selektsii, 2017, 21(1): 124-127 CrossRef (in Russ.).
  30. Novoselov M.Yu. Klever lugovoy (Trifolium pratense L.). V knige: Osnovnye vidy i sorta kormovykh kul’tur [In: Main types and varieties of fodder crops]. Moscow, 2015, 26-30 (in Russ.).
  31. Klimenko I.A., Antonov A.A., Dushkin V.A., Shamustakimova A.O., Mavlyutov Yu.M. Adaptivnoe kormoproizvodstvo, 2021, 3(47): 29-48 CrossRef (in Russ.).
  32. Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y., Kaneko T., Sakurai N., Okumura K., Klimenko I., Sasamoto S., Wada T., Watanabe A., Kothari M., Fujishiro T., Tabata S. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Research, 2005, 12(5): 301-364 CrossRef
  33. Aneja B., Yadav N.R., Chawla V., Yadav R.C. Sequence related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol. Breeding, 2012, 30: 1635-1648 CrossRef
  34. Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S. «Touchdown» PCR to circumvent spurious during gene amplification». Nucleic Acids Res., 1991, 19(14): 4008 CrossRef
  35. Okonechnikov K., Golosova O., Fursov M., the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, 28(8): 1166-1167 CrossRef
  36. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics,2012, 28(19): 2537-2539 CrossRef
  37. Kraft T., Säll T. An evaluation of the use of pooled samples in studies of genetic variation. Heredity, 1999, 82: 488-94 CrossRef
  38. Herrmann D., Boller B., Widmer F., Kölliker R. Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome, 2005, 48(3): 474-486 CrossRef
  39. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA mini preparation: Version II. Plant Molecular Biology Reporter,1983; 1(4): 19-21 CrossRef
  40. Ulloa O., Ortega F., Campos H. Analysis of genetic diversity in red clover (Trifolium pratense L.) breeding populations as revealed by RAPD genetic markers. Genome,2003, 46(4): 529-535 CrossRef
  41. Radinovic I., Vasiljevic S., Brankovic G., Ahsyee R.S., Momirovic U., Perovic D., Surlan-Momirovic G. Molecular characterization of red clover genotypes utilizing microsatellite markers. Chilean Journal of Agricultural Research, 2017, 77(1): 41-47.
  42. Dias P.M.B., Julier B., Sampoux J.P., Barre P., Dall’Agnol M. Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica, 2008, 160: 189-205 CrossRef
  43. Doris H., Beat B., Bruno S., Franco W., Roland K. QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor. Appl. Genet., 2006, 112: 536-545 CrossRef
  44. Kölliker R., Enkerli J., Widmer F. Characterization of novel microsatellite loci for red clover (Trifolium pratense L.) from enriched genomic libraries. Molecular Ecology Notes,2006, 6: 50-53 CrossRef
  45. Gripas’ M.N., Arzamasova E.G., Popova E.V., Onuchina O.L. Agrarnaya nauka Evro-Severo-Vostoka, 2013, 2(33): 19-23 (in Russ.).







Full article PDF (Rus)