doi: 10.15389/agrobiology.2023.3.403eng

UDC: 579.841.3:579.64:579.262:582.736

We would like to express our gratitude to the leadership and coordinators of the Lena 2021 expedition for organizing and conducting the expedition to the Lena Delta region. We sincerely thank Sergey Alexandrovich Pravkin (AARI) for his help in collecting and transporting seeds of legumes. We express our gratitude to the staff of the research station “Samoilovskaya Island” and personally to Fedor Vissanionovich Selyakhov for the provided transport.
The work was carried out using the equipment of the Core Centrum “Genomic Technologies, Proteomics and Cell Biology” at the All-Russian Research Institute for Agricultural Microbiology.
Supported financially by the Russian Science Foundation (project no. 20-76-10042)



D.S. Karlov1 , P.V. Guro1, А.L. Sazanova1, I.G. Kuznetsova1,
N.Yu. Tikhomirova1,
N.N. Laschinsky2, I.S. Pavlov3, А.А. Belimov1,
V.I. Safronova1

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (✉ corresponding author),,,,,,;
2Central Siberian Botanical Garden, 101, ul. Zolotodolinskaya, Novosibirsk, 630090 Russia, e-mail;
3Academy of Sciences of Republic of Sakha (Yakutia),33, prospect Lenina, Yakutsk, 677007 Russia, e-mail

Karlov D.S.
Laschinsky N.N.
Guro P.V.
Pavlov I.S.
Sazanova A.L.
Belimov A.A.
Kuznetsova I.G.
Safronova V.I.
Tikhomirova N.Yu.

Final revision received February 28, 2023
Accepted March 31, 2023

The formation of highly productive pasture phytocenoses, based on legumes that form nitrogen-fixing symbiosis with nodule bacteria, is a necessary condition for the spread and sustainable growth of herbivorous farm animals under climate change and radical restructuring of plant ecosystems in the Arctic. At the same time, the issues of biodiversity of nodule bacteria of Arctic territories and the efficiency of their symbiotic interaction with legumes are currently almost unstudied in Russia. In this work 12 strains isolated from Lathyrus palustris and Vicia cracca nodules growing in Arctic Yakutia were described for the first time.  The taxonomic position of the strains was studied and their ability to form an effective symbiosis with both traditional legumes and wild plants, which are more adapted to the conditions of the Far North and can be used to create highly productive pasture phytocenoses, was shown. The aim of the work was to isolate and study the genetic diversity of nodule bacteria of various populations of wild legume plants of Lathyrus palustris L. and Vicia cracca L. growing in Arctic Yakutia. The ability of the obtained isolates to form nitrogen-fixing nodules on the roots of different species of forage legume crops was evaluated under the conditions of sterile test-tube experiments. Root nodules of V. cracca and L. palustris were collected on Samoilovsky Island and in the settlement of Tiksi during the Russian-German expedition to the Lena River Delta. Rhizobial strains from legume nodules were isolated according to the standard method using mannitol-yeast YMA nutrient media. The taxonomic position of 12 isolates was determined by 16S rDNA (rrs) sequencing. Seeds of V. cracca, V. sativa, L. sativus, and L. pratensis were used to set up of test-tube experiments. Plants were cultivated in sterile 300 ml glass vessels containing 50 ml of Krasilnikov-Korenyako agar medium. The seedlings were inoculated with suspensions of individual strains in the amount of 106 cells/vessel. Commercial strains of Rhizobium leguminosarum bv. viciae RCAM2802, RCAM2806 and RCAM0626 from the Russian Collection of Agricultural Microorganisms (RCAM, ARRIAM, St. Petersburg) were used as a positive control. Uninoculated plants served as negative controls. The number of nodules formed on the plant roots was counted and described at the end of cultivation. The nitrogen-fixing activity of nodules was determined by the acetylene method using a GC-2014 gas chromatograph (Shimadzu, Japan). Seeds of V. cracca and L. pratensis were additionally inoculated under the conditions of a separate test-tube experiment with a soil extract from a sample taken from Kotelny Island (Novosibirsk Islands, Arctic Yakutia). A total of twelve rhizobial isolates assigned to the genera Rhizobium, Mesorhizobium and Bosea were isolated from root nodules of L. palustris and V. cracca populations. Strains of Mesorhizobium sp. 33-3/1 and 32-2/1 were isolated only from populations growing in Tiksi. Rhizobium sp. 32-5/1 strain showed a low similarity of the rrs gene with the closest type strain (less than 98.0 %), which suggests it belonging to the new species of microorganisms. As a result of test-tube experiments, nodules were formed only in the inoculation variants with strains of Rhizobium sp. 19-1/1, 20-1/1, 33-1/1 and Mesorhizobium sp. 32-2/1. Rhizobium sp. 19-1/1 strain formed inactive nodules on the roots of three legume species, except V. cracca. Rhizobium sp. 20-1/1 strain in the inoculation variant with V. cracca formed a greater number of nodules and showed a higher level of nitrogen-fixing activity compared with the commercial strain Rhizobium leguminosarum bv. viciae RCAM0626 for treatment of V. sativa, but the variants did not differ significantly from each other in the number of nodules.

Keywords: Arctic Yakutia, Lena River Delta, legumes, Lathyrus palustris, Vicia cracca, nitrogen-fixing nodule bacteria.



  1. Belonovskaya E.A., Tishkov A.A., Vaysfel’d M.A., Glazov P.M., Krenke-ml. A.N., Morozova O.V., Pokrovskaya I.V., Tsarevskaya N.G., Tertitskiy G.M. Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya, 2016, 3: 28-39 CrossRef (in Russ.).
  2. Tishkov A.A., Belonovskaya E.A., Vaysfel’d M.A., Glazov P.M., Krenke A.N., Tertitskiy G.M. Arktika: еkologiya i еkonomika, 2018, 2(30): 31-44 CrossRef (in Russ.).
  3. Parakhin N.V., Petrova S.N. Vestnik agrarnoy nauki, 2009, 3(18): 41-45 (in Russ.).
  4. Pryadil’shchikova E.N., Kalabashkin P.N., Konovalova S.S. Vladimirskiy zemledelets, 2018, 1(83): 32-35 CrossRef (in Russ.).
  5. Kriss A.E., Korenyako A.I., Migulina V.M. Mikrobiologiya, 1941, 10(1): 61-71 (in Russ.).
  6. Vishnyakova M.A., Burlyaeva M.O. The potential of economic value and the prospects for the use of Russian types of rank. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2006, 6: 85-97.
  7. Vishnyakova M.A. Vetch species from Vavilov’s institute collection — promising forages for cultivation in Russian Federation (a review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 42(4): 3-19.
  8. Argunov A.V., Stepanova V.V. Struktura ratsiona sibirskoy kosuli v Yakutii. Еkologiya, 2011, 2: 144-147 (in Russ.).
  9. Kormovye rasteniya senokosov i pastbishch SSSR. Tom 2 /Pod redaktsiey I.V. Larina [Forage plants of hayfields and pastures of the USSR. Volume 2. I.V. Larin (ed.)]. Leningrad, 1951 (in Russ.).
  10. Gosudarstvennyy reestr selektsionnykh dostizheniy, dopushchennykh k ispol’zovaniyu. Tom 1. Sorta rasteniy (ofitsial’noe izdanie) [State register of selection achievements approved for use. Volume 1. Plant varieties (official edition)]. Moscow, 2021 (in Russ.).
  11. Baymiev A.Kh., Ptitsyn K.G., Muldashev A.A., Baymiev A.Kh. Еkologicheskaya genetika, 2011, 9(2): 3-8 (in Russ.).
  12. Ampomah O.Y., Huss-Danell K. Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden. Systematic and Applied Microbiology, 2016, 39(3): 203-210 CrossRef
  13. Villadas P.J., Lasa A.V., Martínez-Hidalgo P., Flores-Félix J.D., Martínez-Molina E., Toro N., Velázquez E., Fernández-López M. Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Systematic and Applied Microbiology, 2017, 40(2): 92-101 CrossRef
  14. Aoki S., Kondo T., Prévost D., Nakata S., Kajita T., Ito M. Genotypic and phenotypic diversity of rhizobia isolated from Lathyrus japonicus indigenous to Japan. Systematic and Applied Microbiology, 2010, 33(7): 383-397 CrossRef
  15. Li Y., Wang E.T., Liu Y., Li X., Yu B., Ren C., Liu W., Li Y., Xie Z. Rhizobium anhuiense as the predominant microsymbionts of Lathyrus maritimus along the Shandong Peninsula seashore line. Systematic and Applied Microbiology, 2016, 39(6): 384-390 CrossRef
  16. Chen W.M., Zhu W.F., Bontemps C., Young J.P.W., Wei G.H. Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in north-western China. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(4): 958-962 CrossRef
  17. Caudry-Reznick S., Prevost D., Schulman H.M. Some properties of arctic rhizobia. Archives of Microbiology, 1986, 146(1): 12-18.
  18. Ryabova O.V. Agrarnaya nauka Evro-Severo-Vostoka, 2016, 1(50): 31-40 (in Russ.).
  19. Novikova N., Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiology Letters, 1992, 93(3): 261-268 CrossRef
  20. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173(2): 697-703 CrossRef
  21. Lashchinskiy N.N. Materialy Vserossiiskoy nauchno-prakticheskoy konferentsii «Itogi i perspektivy geobotanicheskikh issledovaniy v Sibiri» [Proc. Russian Conf. «Results and prospects of geobotanical research in Siberia»]. Novosibirsk, 2019: 64-65 (in Russ.).
  22. Sekretareva N.A., Sytin A.K. Botanicheskiy zhurnal, 2006, 91(1): 3-22 (in Russ.).
  23. Nikolin E.G., Yakshina I.A. Еkologicheskiy vestnik Severnogo Kavkaza, 2017, 13(3): 36-37 (in Russ.).
  24. Bol’shiyanov D.Yu., Makarov A.S., Shnayder V., Shtof G. Proiskhozhdenie i razvitie del’ty reki Leny [Origin and development of the Lena River Delta]. St. Petersburg, 2013 (in Russ.).
  25. Safronova V.I., Kimeklis A.K., Chizhevskaya E.P., Belimov A.A., Andronov E.E., Pinaev A.G., Pukhaev A.R., Popov K.P., Tikhonovich I.A. Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed. Antonie Leeuwenhoek, 2014, 105(2): 389-399 CrossRef
  26. Andrews M., Andrews M.E. Specificity in Legume-Rhizobia symbioses. International Journal of Molecular Sciences, 2017, 18(4): 705-744 CrossRef
  27. Zhang Y.J., Zheng W.T., Everall I., Young J.P.W., Zhang X.X., Tian C.F., Sui X.H., Wang E.T., Chen W.X. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativumInternational Journal of Systematic and Evolutionary Microbiology, 2015, 65(9): 2960-2967 CrossRef
  28. Jiao Y.S., Yan H., Ji Z.J., Liu Y.H., Sui X.H., Wang E.T., Guo B.L., Chen W.X., Chen W.F. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(2): 497-503 CrossRef
  29. Zhang J., Li S., Wang N., Yang T., Brunel B., Andrews M., Zong X., Wang E. Rhizobium sophorae is the dominant rhizobial symbiont of Vicia faba L. in North China. Systematic and Applied Microbiology, 2022, 45(1): 126-291 CrossRef
  30. Saïdi S., Ramírez Bahena M.-H., Santillana N., Zúniga D., Álvarez Martínez E., Peix A., Mhamdi R., Velázquez E. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(1): 242-247 CrossRef
  31. Taha K., Berraho El B., El Attar I., Dekkiche S., Aurag J., Béna G. Rhizobium laguerreae is the main nitrogen-fixing symbiont of cultivated lentil (Lens culinaris) in Morocco. Systematic and Applied Microbiology, 2018, 41(2): 113-121 CrossRef
  32. Zhang J., Shang Y., Peng S., Chen W., Wang E., de Lajudie P., Li B., Guo C., Liu C. Rhizobium sophorae, Rhizobium laguerreae, and two novel Rhizobium genospecies associated with Vicia sativa L. in Northwest China. Plant and Soil, 2019, 442(1): 113-126 CrossRef
  33. Flores-Félix J.D., Sánchez-Juanes F., García-Fraile P., Valverde A., Mateos P.F., Gónzalez-Buitrago J.M., Velázquez E., Rivas R. Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Systematic and Applied Microbiology, 2019, 42(2): 240-247 CrossRef
  34. Flores-Félix J.D., Carro L., Cerda-Castillo E., Squartini A., Rivas R., Velázquez E. Analysis of the interaction between Pisum sativum L. and Rhizobium laguerreae strains nodulating this Legume in Northwest Spain. Plants, 2020, 9(12): 1755 CrossRef
  35. Jiménez-Gómez A., Flores-Félix J.D., García-Fraile P., Mateos P.F., Menéndez E., Velázquez E., Rivas R. Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Scientific Reports, 2018, 8(1): 295 CrossRef
  36. Ayuso-Calles M., García-Estévez I., Jiménez-Gómez A., Flores-Félix J.D., Escribano-Bailón M.T., Rivas R. Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods, 2020, 9(9): 1166 CrossRef
  37. Kabdullayeva T., Crosbie D.B., Marín M. Mesorhizobium norvegicum sp. nov., a rhizobium isolated from a Lotus corniculatus root nodule in Norway. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 388-396 CrossRef
  38. Jarvis B.D.W., Pankhurst C.E., Patel J.J. Rhizobium loti, a new species of legume root nodule bacteria. International Journal of Systematic and Evolutionary Microbiology, 1982, 32(3): 378-380 CrossRef
  39. De Meyer S.E., Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(10): 2505-2510 CrossRef
  40. Safronova V.I., Kuznetsova I.G., Sazanova A.L., Kimeklis A.K., Belimov A.A., Andronov E.E., Pinaev A.G., Chizhevskaya E.P., Pukhaev A.R., Popov K.P., Willems A., Tikhonovich I.A. Bosea vaviloviae sp. nov., a new species of slow growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek,2015, 107(4): 911-920 CrossRef
  41. Sazanova A.L., Safronova V.I., Kuznetsova I.G., Karlov D.S., Belimov A.A., Andronov E.E., Chirak E.R., Popova J.P., Verkhozina A.V., Willems A., Tikhonovich I.A. Bosea caraganae sp. nov., a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(9): 2687-2695 CrossRef
  42. Pulido-Suárez L., Flores-Félix J.D., Socas-Pérez N., Igual J.M., Velázquez E., Péix Á., León-Barrios M. Endophytic Bosea spartocytisi sp. nov. coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Systematic and Applied Microbiology, 2022, 45(6): 126374 CrossRef







Full article PDF (Rus)