doi: 10.15389/agrobiology.2023.3.429eng

UDC: 579.64.635.21

Supported financially by the project “Development of selection and seed production of potatoes in the Russian Federation” from the Federal Scientific and Technical Program for the Development of Agriculture for 2017-2025
The authors declare no conflict of interests



V.К. Chebotar1 , A.N. Zaplatkin1, S.V. Balakina2, N.M. Gadzhiev2, V.A. Lebedeva2, A.V. Khiutti3, E.P. Chizhevskaya1, P.S. Filippova4, O.V. Keleinikova1, M.E. Baganova1, V.N. Pishchik1

1All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (✉ corresponding author),,,,,;
2Leningrad Research Agriculture InstituteBelogorka — Branch of Lorkh Russian Potato Research Center, 1, ul. Institutskaya, Belogorka, Gatchina District, Laningrad Province, 188338 Russia, e-mail,,;
All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail;
4St. Petersburg Federal Research Center RAS, North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, 7, sh. Podbelskogo, St. Petersburg—Pushkin, 196608 Russia, e-mail

Chebotar V.K.
Chizhevskaya E.P.
Zaplatkin A.N.
Filippova P.S.
Balakina S.V.
Keleinikova O.V.
Gadzhiev N.M.
Baganova M.E.
Lebedeva V.A.
Pishchik V.N.
Khiutti A.V.

Final revision received March 09, 2023
Accepted April 04, 2023

Chemical fungicides are chemicals used to combat late blight and potato rhizoctoniosis. However, due to repeated treatments, the resistance of plant pathogens to fungicides increases. Biofungicides serve as an alternative to chemical fungicides. The use of strains of endophytic bacteria of the genus Bacillus is promising for the development of novel biofungicides. Endophytes, being inside plants, have an advantage in interactions with the plant compared to bacteria occupying other ecological niches. In this work, for the first time, the effectiveness of experimental samples of preparations based on strains of endophytic bacteria of the genus Bacillus was established when growing potato (Solanum tuberosum L.) varieties differing in resistance to late blight in the conditions of the North-West of the Russian Federation. It is known that the effectiveness of the use of endophytes with biocontrol activity differed in the field when growing potatoes, while the varietal responsiveness of potatoes to biocontrol agents has not been sufficiently studied. The aim of the research was to study the effect of experimental samples of preparations of endophytic bacteria B. thuringiensis W65 and B. amyloliquefaciens P20 on the yield and infection of potato plants with rhizoctoniosis and late blight. Strains of endophytic bacteria B. thuringiensis W65 and B. amyloliquefaciens P20 isolated from potatoes had antagonistic activity to phytopathogens-pathogens of late blight Phytophthora infestans (Mont. de Bary) and rhizoctoniosis Rhizoctonia solani (Kuhn.) when growing on agar media. Small-scale field experiments (2020-2021) were conducted at the experimental field of the Leningrad Research Agriculture Institute Belogorka. The experiment scheme included the following options: clean control — no treatments; chemical control — treatment with chemical fungicides: CELEST® Top, SC (Syngenta, Russia), Mankoceb, WP (AgroRus and Co., Russia), Rapid Duo,WP (AgroRus and Co., Russia), Infinito, SC (Bayer Crop Science, Germany), Buzzer, SC (CROPEX, Russia) and desiccant Golden Ring (Agro Еxpert group, Russia); biological control — BisolbiSan (BISOLBI INTER, Russia), the biofungicide based on rhizospheric bacteria Bacillus subtilis Ch-13; experimental sample of the preparation B. thuringiensis W65, experimental sample of the preparation B. amyloliquefaciens P2. Two potato varieties, Charoit (resistant to late blight) and Gusar (susceptible to late blight), were used. In the experiments, the dynamics of plant growth and development, yield and infection of potato plants with rhizoctoniosis and late blight were evaluated. Statistical treatment of the obtained results (calculations of averages and their standard errors, ANOVA analysis of variance, Duncan’s test, was carried out using the Statistica 10 program («StatSoft, Inc.», USA). When inoculated with experimental samples of B. amyloliquefaciens P20 and B. thuringiensis W65, the duration of flowering of potato plants increased by 8-13 days compared to the control. The potato tuber harvest also increased by 7.9-14.6 % (p < 0.05). The largest increase in yield was registered on the Gusar variety in 2020. It was found that responses of potato varieties to inoculation with experimental samples of B. amyloliquefaciens P20 and B. thuringiensis W65 preparations differed. The yield of potato tubers of the Charoit variety mainly increased due to an increase in the average weight of one tuber while the yield of the Gusar variety increased due to an increase in the number of tubers per plant. When inoculated with experimental samples of B. amyloliquefaciens P20 and B. thuringiensis W65, the crop structure changed, the yield of the large tuber fraction increased by 22.5-30.6 % (p < 0.05) in Charoit variety. The use of experimental samples of B. amyloliquefaciens P20 and B. thuringiensis W65 did not have a significant effect on the development of rhizoctoniosis in small-scale experiments. The B. amyloliquefaciens P20-based preparation showed 42.8 % biological efficacy in reducing the development of late blight on the potato variety Charoit. Preparation of endophytic bacteria based on B. amyloliquefaciens P20 can be recommended for further testing in commercials field trials when growing potatoes in an integrated protection system together with chemical fungicides and inducers of systemic plant resistance.

Keywords: endophytic bacteria, Bacillus thuringiensis W65, Bacillus amyloliquefaciens P20, biofungicides, tuber harvest, potatoes, rhizoctoniosis, late blight.



  1. Alekseeva K.L., Volkov E.I., Rudakov V.O. Protiv mikozov kartofelya. Kartofel’ i ovoshchi, 2015, 3: 27-28.
  2. Fry W. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 2008, 9(3): 385-402 CrossRef
  3. Ivanov A.A., Ukladov E.O., Golubeva T.S. Phytophthora infestans: An overview of methods and attempts to combat late blight. J. Fungi (Basel), 2021, 7(12): 1071 CrossRef
  4. Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 2006, 44: 41-60 CrossRef
  5. Vleeshouwers V.G., Rietman H., Křenek P., Champouret N., Young C.A., Oh S., Wang M., Bouwmeester K., Vosman B., Visser R., Jacobsen E., Govers F., Kamoun S., van der Vossen E.A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE,2008, 3(8): e2875 CrossRef
  6. Wang Sh., Boevink P.C., Welsh L., Zhang R., Stephen C. Whisson S.C., Birch P.R.J. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways New Phytol.,2017, 216(1): 205-215 CrossRef
  7. Tian M., Win J., Song .J, van der Hoorn R., van der Knaap E., Kamoun S. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology, 2007, 143(1): 364-377 CrossRef
  8. Kaschani F., Shabab M., Bozkurt T., Shindo T., Schornack S., Gu C., Ilyas M., Win J., Kamoun S., van der Hoorn R. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiology,2010, 154(4): 1794-1804 CrossRef
  9. Dong S., Stam R., Cano L.M., Song J., Sklenar J., Yoshida K., Bozkurt T.O., Oliva R., Liu Z., Tian M., Win J., Banfield M.I., Jones A.M.E., van der Hoorn R.A.L., Kamoun S. Effector specialization in a lineage of the Irish potato famine pathogen. Science, 2014, 343(6170): 552-555 CrossRef
  10. Anderson R.G., Deb D., Fedkenheuer K., McDowell J.M. Recent progress in RXLR effector research. Mol Plant Microbe Interact, 2015, 28(10): 1063-1072 CrossRef
  11. Lehsten V., Wiik L., Hannukkala A., Andreasson E., Chen D., Ou T., Liljeroth E., Lankinen A., Grenville-Briggs L. Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE,2017, 12(5): e0177580 CrossRef
  12. Raza W., Ghazanfar M.U., Sullivan L., Cooke D.E.L., Cooke L.R. Mating type and aggressiveness of phytophthora infestans (Mont.) de Bary in potato-growing areas of Punjab, Pakistan, 2017-2018 and identification of genotype 13_A2 in 2019-2020. Potato Res., 2021, 64: 115-129 CrossRef
  13. Cohen Y. Populations of Phytophthora infestans in Israel underwent three major genetic changes during 1983 to 2000 Phytopathology,2002, 92(3): 300-307 CrossRef
  14. Zoteeva N.M., Vasipov V.V., Orina A.S. Vestnik zashchity rasteniy, 2020, 103(2): 99-104 CrossRef (in Russ.).
  15. Mukherjee N. Sheath blight of rice (Thanatephorus cucumeris) and its control possibilities. Pesticides, 1978, 12(8): 39-40.
  16. Tsror L. Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 2010, 158(10): 649-658 CrossRef
  17. Anderson J.P., Sperschneider J., Win J., Kidd B., Yoshida K., Hane J., Saunders D., Singh K.B. Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Sci. Rep.,2017, 7: 10410 CrossRef
  18. Wei M., Wang A.J., Liu Y., Ma L., Niu X., Zheng A. Identification of the novel effector RsIA_NP8 in Rhizoctonia solani AG1 IA that induces cell death and triggers defense responses in non-host plants. Front Microbiol., 2020, 11: 1115 CrossRef
  19. Charova S.N., Dölfors F., Holmquist L., Moschou P.N., Dixelius C., Tzelepis G. The RsRlpA Effector is a protease inhibitor promoting Rhizoctonia solani virulence through suppression of the hypersensitive response. Int. J. Mol. Sci., 2020, 21(21): 8070 CrossRef
  20. Udalova E.Yu. Vestnik Mariyskogo gosudarstvennogo universiteta, 2018, 16, 4: 72-78 (in Russ.).
  21. Zeyruk V.N., Vasil’eva S.V., Kolesova E.A., Bukharova A.R. Zashchita i karantin rasteniy, 2022, 3: 18-21 (in Russ.).
  22. Shcherbakova L.A. Fungicide resistance of plant pathogenic fungi and their chemosensitization as a tool to increase anti-disease effects of triazoles and strobilurines (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 875-891 CrossRef
  23. Pavlyushin V.A., Novikova I.I., Boykova I.V. Microbiological control in phytosanitary optimization technologies for agroecosystems: research and practice (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(3): 421-438 CrossRef
  24. Belov D.A., Khyutti A.V. Kartofel’ i ovoshchi, 2022, 5: 18-24 CrossRef (in Russ.).
  25. Tyuterev S.L. Vestnik zashchity rasteniy, 2001, 1: 38-53 (in Russ.).
  26. Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol.,2014, 7: 133-141 CrossRef
  27. Childers R., Danies G., Myers K., Fei Z., Small I.M., Fry W.E. Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans. Phytopathology, 2015,105(3): 342-349 CrossRef
  28. Schepers H.T.A.M., Kessel G.J.T., Lucca F., Forsh M.G., van den Bosch G.B.M., Topper C.G., Evenhuis A. Reduced efficacy of fluazinam against Phytophthora infestans in the Netherlands. Eur. J. Plant. Pathol., 2018, 151: 947-960 CrossRef
  29. Wang W., Fang Y., Imran M., Hu Z., Zhang S., Huang Z., Liu X. Characterization of the field fludioxonil resistance and its molecular basis in Botrytis cinerea from Shanghai province in China. Microorganisms, 2021, 9(2): 266 CrossRef
  30. González-Tobón J., Childers R., Olave C., Regnier M., Rodríguez-Jaramillo A., William Fry W., Silvia Restrepo S., Danies G. Is the phenomenon of mefenoxam-acquired resistance in Phytophthora infestans universal? Plant Disease, 2020, 104(1): 211-221 CrossRef
  31. Fry W.E., Birch P.R.J., Judelson H.S., Grünwald N.J., Danies G., Everts K.L., Gevens A.J., Gugino B.K., Johnson D.A., Johnson S.B., McGrath M.T., Myers K.L., Ristaino J.B., Roberts P.D., Secor G., Smart C.D. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 2015, 105(7): 966-981 CrossRef
  32. Leesutthiphonchai W., Vu A.L., Ah-Fong A.M.V., Judelson H.S. How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology, 2018, 108(8): 916-924 CrossRef
  33. Maridueña-Zavala M., Freire-Peñaherrera A., Cevallos-Cevallos J., Peralta E. GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl. Eur. J. Plant Pathol., 2017, 149: 563-574 CrossRef
  34. Khalaeva V.I., Volchkevich I.G. V sbornike: Zashchita rasteniy [In: Plant protection]. Minsk, 2021: 168-175 CrossRef (in Russ.).
  35. Titova Yu.A., Novikova I.I., Boykova I.V., Pavlyushin V.A., Krasnobaeva I.L. Novel solid-phase multibiorecycled biologics based on Bacillus subtilis and Trichoderma asperellum as effective potato protectants against Phytophthora disease. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 1002-1013 CrossRef
  36. Yarullina L.G., Burkhanova G.F., Tsvetkov V.O., Cherepanova E.A., Zaikina E.A., Sorokan’ A.V. Maksutova V.O., Kalatskaya Zh.N., Maksimov I.V. Prikladnaya biokhimiya i mikrobiologiya, 2022, 58(2): 185-194 CrossRef (in Russ.).
  37. Kaur A., Sharma V., Kumar A. Assessment of late blight resistance in Indian potato cultivars and associated biochemical changes during disease development. Potato Res., 2022, 65(4): 863-879 CrossRef
  38. Bibi F., Yasir M., Song G.-C., Lee S.-Y., Chung Y.-R. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. The Plant Pathology Journal, 2012, 28(1): 20-31 CrossRef
  39. Toral L., Rodríguez M., Béjar V., Sampedro I. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 2020, 8(7): 992 CrossRef
  40. Rashad Y.M., Abbas M.A., Soliman H.M., Abdel-Fattah G.G., Abdel-Fattah G.M. Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phytopathol. Mediterr., 2020, 59(1): 169-186 CrossRef
  41. Cui L., Yang C., Wei L., Li T., Chen X. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological Control, 2020, 141: 104156 CrossRef
  42. Sharma A., Kaushik N., Sharma A., Bajaj A., Rasane M., Shouche Y.S., Marzouk T., Djébali N. Screening of tomato seed bacterial endophytes for antifungal activity reveals lipopeptide producing Bacillus siamensis strain NKIT9 as a potential bio-control agent. Front. Microbiol., 2021, 12: 1228 CrossRef
  43. Mardanova A.M., Hadieva G.F., Lutfullin M.T., Khilyas I.V., Minnullina L.F., Gilyazeva A.G., Bogomolnaya L.M., Sharipova M.R. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agricultural Sciences, 2017, 8(1): 1-20 CrossRef
  44. Sidorova T.M., Asaturova A.M., Khomyak A.I., Tomashevich N.S. Isolation and characterization of antifungal metabolites of Bacillus subtilis strains BZR 336G and BZR 517 using the modified bioauthography method. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 178-185 CrossRef
  45. Rashad Y.M., Abdalla S.A., Sleem M.M. Endophytic Bacillus subtilis SR22 triggers defense responses in tomato against rhizoctonia root rot. Plants, 2022, 11(15): 2051 CrossRef
  46. Wang Y., Zhang C., Liang J., Wang L., Gao W., Jiang J., Chang R. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl. Microbiol. Biotechnol., 2020, 104: 7467e7481 CrossRef
  47. Sorokan A., Benkovskaya G., Burkhanova G., Blagova D., Maksimov I. Endophytic strain Bacillus subtilis 26DCryChS producing Cry1Ia toxin from Bacillus thuringiensis promotes multifaceted potato defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say. Plants, 2020, 9(9): 1115 CrossRef
  48. Maksimov I.V., Blagova D.K., Veselova S.V., Sorokan A.V., Burkhanova G.F., Cherepanova E.A., Sarvarova E.R., Rumyantsev S.D., Alekseev V.Y., Khayrullin R.M. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and green bug Schizaphis graminum Rond. Biological Control, 2020, 144: 326-338 CrossRef
  49. Reyes-Ramirez A., Escudero-Abarca B.I., Aguilar-Uscanga G., Hayward-Jones P.M., Barboza-Corona J.E. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. Journal of Food Science,2004, 69(5): M131-M134 CrossRef
  50. Tang Y., Zou J., Zhang L., Li Z., Ma C., Ma N. Anti-fungi activities of Bacillus thuringiensis H3 chitinase and immobilized chitinase particles and their effects to rice seedling defensive enzymes. Journal of Nanoscience and Nanotechnology, 2012, 12(10): 8081-8086 CrossRef
  51. Tang M., Sun X., Zhang S., Wan J., Li L., Ni H. Improved catalytic and antifungal activities of Bacillus thuringiensis cells with surface display of Chi9602DeltaSP. Journal of Applied Microbiology, 2017, 122(1): 106-118 CrossRef
  52. Ni H., Zeng S., Qin X., Sun X., Zhang S., Zhao X., Yu Z., Li L. Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. Int. J. Biol. Sci.,2015,11(3): 304-315 CrossRef
  53. Vasil’eva E.N., Akhtemova G.A., Zhukov V.A., Tikhonovich I.A. Еkologicheskaya genetika, 2019, 17(1): 19-32 CrossRef (in Russ.).
  54. Su Y., Liu C., Fang H., Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Factor., 2020, 19: 173 CrossRef
  55. El-Hasan A., Ngatia G., Link T.I., Voegele R.T. isolation, identification, and biocontrol potential of root fungal endophytes associated with solanaceous plants against potato late blight (Phytophthora infestans). Plants, 2022, 11(12): 1605 CrossRef
  56. Berg G., Krechel A., Ditz M., Sikora R. A., Ulrich A., Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology,2005, 51(2): 215-229 CrossRef
  57. Yan H., Qiu Y., Yang S., Wang Y., Wang K., Jiang L., Wang H. Antagonistic activity of Bacillus velezensis SDTB038 against Phytophthora infestans in potato. Plant Disease,2021, 105(6): 1738-1747 CrossRef
  58. Kim M.J., Shim C.K., Park J.-H. Control efficacy of Bacillus velezensis AFB2-2 against potato late blight caused by Phytophthora infestans in organic potato cultivation. The Plant Pathology Journal, 2021, 37(6): 580-595 CrossRef
  59. Kumbar B., Mahmood R., Nagesha S.N., Nagaraja M.S., Prashant D.G., Kerima O.Z., Karosiya A., Chavan M. Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. Biocatal Agricul Biotechnol, 2019, 22: 101366 CrossRef
  60. Hussain T., Khan A.A. Bacillus subtilis HussainT-AMU and its Antifungal activity against Potato Black scurf caused by Rhizoctonia solani on seed tubers. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101443 CrossRef
  61. Gaynatullina V.V., Makarova M.A. Dal’nevostochnyy agrarnyy vestnik, 2018, 47, 3: 7-12 (in Russ.).
  62. Gerkhard F.-M. Metody obshchey bakteriologii [Methods of bacteriology]. Moscow, 1983 (in Russ.).
  63. Magnusson J., Schnürer J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 2001, 67(1): 1-5 CrossRef
  64. Metodicheskie ukazaniya po registratsionnym ispytaniyam fungitsidov v sel’skom khozyaystve /Pod redaktsiey V.I. Dolzhenko [Guidelines for registration testing of fungicides in agriculture. V.I. Dolzhenko (ed.)]. St. Petersburg, 2009 (in Russ.).
  65. Derevyagina M.K., Vasil’eva S.V., Zeyruk V.N., Belov G.L. Agrokhimicheskiy vestnik, 2018, 5: 65-68 (in Russ.).
  66. Chebotar V.K., Zaplatkin A.N., Komarova O.V., Baganova M.E., Chizhevskaya E.P., Polukhin N.I., Balakina S.V. Endophytic bacteria for development of microbiological preparations for increasing productivity and protection of new potato varieties. ResearchonCrops, 2021, 22: 104-107 CrossRef
  67. Lastochkina O.V. Adaptation and tolerance of wheat plants to drought mediated by natural growth regulators Bacillus spp.: mechanisms and practical importance (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology],2021, 56(5): 843-867 CrossRef
  68. Hashemi M., Tabet D., Sandroni M., Benavent-Celma C., Seematti J., Andersen C.B., Grenville-Briggs L. The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans. Fungal Biology Reviews, 2021, 40: 53-69 CrossRef
  69. Shukla N., Lemke P., Moerschbacher B.M., Kumar J. ‘Cu-Chi-Tri’, a new generation combination for knowledge-based management of oomycete pathogen, Phytophthora infestans. In: Emerging trends in plant pathology. K.P. Singh, S. Jahagirdar, B.K. Sarma (eds.). Springer, Singapore, 2021: 297-315 CrossRef
  70. Lastochkina O., Pusenkova L., Garshina D., Kasnak C., Palamutoglu R., Shpirnaya I., Mardanshin I., Maksimov I. Improving the biocontrol potential of endophytic bacteria Bacillus subtilis with salicylic acid against Phytophthora infestans-caused postharvest potato tuber late blight and impact on stored tubers quality. Horticulturae, 2022, 8(2): 117 CrossRef







Full article PDF (Rus)