PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.3.425eng

UDC: 631.427.3/.631.427.4:577.3

 

BIOELECTROCHEMICAL SYSTEMS BASED ON THE ELECTROACTIVITY OF PLANTS AND MICROORGANISMS IN THE ROOT ENVIRONMENT (review)

T.E. Kuleshova1, A.S. Galushko1, G.G. Panova1 , E.N. Volkova1,
W. Apollon2, Ch. Shuang3, S. Sevda4

1Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail www.piter.ru@bk.ru, galushkoas@inbox.ru, gaiane@inbox.ru (✉ corresponding author), ele-ven@yandex.ru;
2Autonomous University of Nuevo Leon, Nuevo Leon, 66050 Mexico, e-mail apollonwilgince@gmail.com;
3Nanjing University, Nanjing, 210023 China, e-mail: shuangchendong@nju.edu.cn;
4National Institute of Technology Warangal, Warangal, 506004 India, e-mail: sevdasuraj@nitw.ac.in

ORCID:
Kuleshova T.E. orcid.org/0000-0003-3802-2494
Apollon W. orcid.org/0000-0002-3790-3807
Galushko A.S. orcid.org/0000-0002-0387-7997
Shuang Ch. orcid.org/0000-0003-1062-1401
Panova G.G. orcid.org/0000-0002-1132-9915
Sevda S. orcid.org/0000-0002-8471-5681
Volkova E.N. orcid.org/0000-0001-7429-4046

Received January 21, 2022

 

Bioelectrochemical systems (BES) based on electroactive processes in the root environment of plants and accompanying microorganisms are a new promising environmentally friendly technology for generating renewable energy. Although the possibility of practical use of bioenergy resources has already been shown in many studies, the nature of electrogenesis and the influence of external parameters on it have not been fully identified. The emergence of a potential difference in living systems is due to a complex of physicochemical processes that maintain an uneven distribution of ions at the cellular, tissue and organism levels (N. Higinbotham, 1970). In the process of plant development along the whole organism, a gradient of electrical potentials arises due to the diffusion of ions, concentration effects and differences in the intensities of biochemical processes (T.A. Tattar et al., 1976). Along with this, microorganisms of the rhizosphere are able to oxidize organic matter secreted by the roots (L. De Schamphelaire et al., 2010), while synthesizing carbon dioxide, protons and electrons. The ions and electrons formed in the course of redox reactions diffuse through the inhabited medium, leading to charge separation (B.E. Logan, 2008); as a result, a gradient of electropotentials is established, associated with differences in the concentrations of charged substances. A complex of processes for converting chemical energy from organic substances into electrical energy forms is the basis of the plant-microbial fuel cell (PMFC). The most common configuration of the PMFC device consists of an anode and cathode chambers, an ion-selective membrane (D.P. Strik et al., 2008); there are also various modifications in the form of a flat plate (M. Helder et al., 2013), a tubular configuration (R.A. Timmers et al., 2013), aimed at increasing the output electrical characteristics. One of the most important components of a BES are electrode systems. Most often carbon materials, which have high electrical conductivity, corrosion resistance, and a large specific surface area, are used. The productivity of BES depends on the composition of the root environment, the presence of potential-forming ions, and on the parameters of the light environment, the efficiency of photosynthesis. A promising option for using PMFC is their combination with significant production processes, in particular, their introduction into agricultural production. The possibility of using BES is shown on a number of cultivated and industrial plants with obtaining the following low-power energy output when growing rice — 140 mW/m2 (N. Ueoka et al., 2016), lettuce — 54 mW/m2 (T.E. Kuleshova et al., 2021), Reed mannagrass — 80 mW/m2 (R.A. Timmers et al., 2012), Common reed — 42 mW/m2 (J. Villasenor et al., 2013), cattail — 93 mW/m2 (Y.L. Oon et al., 2016), Common cordgrass — 679 mW/m2 (K. Wetser et al., 2015), etc., which have found application as food products, fuel, building materials, animal feed, etc. Prospects for the use of BES include power supply for environmental sensors (A. Schievano et al., 2017), light sources (W. Apollon et al., 2020), wireless sensor networks (E. Osorio-De-La-Rosa et al., 2021), the Internet of things (IoT) (Jayaraman P.P. et al., 2016), phytomonitoring systems in natural conditions, greenhouses, remote areas, partial power supply of plant life support devices in artificial agroecosystems (T.E. Kuleshova et al., 2021), wastewater treatment (L. Kook et al., 2016).

Keywords: green energy, plant-microbial fuel cell, bioelectrogenesis, electroactive bacteria.

 

REFERENCES

  1. Dedyu I.I. Еkologicheskiy еntsiklopedicheskiy slovar’ [Ecological encyclopedic dictionary]. Kishinev, 1990 (in Russ.).
  2. Brenner E.D., Stahlberg R., Mancuso S., Vivanco J., Baluška F., Van Volkenburgh E. Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 2006, 11(8): 413-419 CrossRef
  3. Higinbotham N. Movement of ions and electrogenesis in higher plant cells. American Zoologist, 1970, 10(3): 393-403 CrossRef
  4. Medvedev S.S. Еlektrofiziologiya rasteniy [Plant electrophysiology].  St. Petersburg, 1998 (in Russ.).
  5. Tattar T.A., Blanchard R.O. Electrophysiological research in plant pathology. Annual Review of Phytopathology, 1976, 14(1): 309-325 CrossRef
  6. Pozdnyakov A.I. Pochvovedenie, 2013, 7: 813-813 CrossRef (in Russ.).
  7. Opritov V.A., Tyatygin S.S., Retivin V.G. Bioеlektrogenez u vysshikh rasteniy [Bioelectrogenesis in higher plants]. Moscow, 1991 (in Russ.).
  8. Moqsud M.A., Yoshitake J., Bushra Q.S., Hyodo M., Omine K., Strik D. Compost in plant microbial fuel cell for bioelectricity generation. Waste Management, 2015, 36: 63-69 CrossRef
  9. De Schamphelaire L., Cabezas A., Marzorati M., Friedrich M.W., Boon N., Verstraete W., Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Applied and Environmental Microbiology, 2010, 76(6): 2002-2008 CrossRef
  10. Logan B. E. Microbial fuel cells. John Wiley & Sons, 2008.
  11. Kabutey F.T., Zhao Q., Wei L., Ding J., Antwi P., Quashie F.K., Wang W. An overview of plant microbial fuel cells (PMFCs): configurations and applications. Renewable and Sustainable Energy Reviews, 2019, 110: 402-414 CrossRef
  12. El-Naggar M.Y., Wanger G., Leung K.M., Yuzvinsky T.D., Southam G., Yang J., Lau W.M., Nealson K.H., Gorby Y.A. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the USA, 2010, 107(42): 18127-18131 CrossRef
  13. Sekar N., Ramasamy R.P. Electrochemical impedance spectroscopy for microbial fuel cell characterization. Journal of Microbial and Biochemical Technology, 2013: 6 CrossRef
  14. Lovley D.R., Holmes D.E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology, 2022, 20(1): 5-19 CrossRef
  15. Timmers R.A., Rothballer M., Strik D.P., Engel M., Schulz S., Schloter M., Hartmann A., Hamelers B., Buisman C. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 2012, 94: 537-548 CrossRef
  16. Park D.H., Kim B.H. Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe (III) to Fe (II). Journal of Microbiology, 2001, 39(4): 273-278.
  17. Niessen J., Schröder U., Scholz F. Exploiting complex carbohydrates for microbial electricity generation — a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004, 6(9): 955-958 CrossRef
  18. Xing D., Zuo Y., Cheng S., Regan J.M., Logan B.E. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 2008, 42(11): 4146-4151 CrossRef
  19. Galushko A.S., Schink B. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Archives of Microbiology, 2000, 174: 314-321 CrossRef
  20. Bond D.R., Lovley D.R. Reduction of Fe (III) oxide by methanogens in the presence and absence of extracellular quinones. Environmental Microbiology, 2002, 4(2): 115-124 (doi:  10.1046/j.1462-2920.2002.00279.x">CrossRef
  21. Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 2005, 39(9): 1675-1686 CrossRef
  22. Chaudhuri S.K., Lovley D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 2003, 21: 1229-1232 CrossRef
  23. Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 2005, 23(6): 291-298 CrossRef
  24. Rezaei F., Xing D., Wagner R., Regan J.M., Richard T.L., Logan B.E. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Applied and Environmental Microbiology, 2009, 75(11): 3673-3678 CrossRef
  25. Deng H., Chen Z., Zhao F. Energy from plants and microorganisms: progress in plant-microbial fuel cells. ChemSusChem, 2012, 5(6): 1006-1011 CrossRef
  26. He Z., Kan, J., Wang Y., Huang Y., Mansfeld F., Nealson K.H. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science & Technology, 2009, 43(9): 3391-3397 CrossRef
  27. Higinbotham N. Electropotentials of plant cells. Annual Review of Plant Physiology, 1973, 24(1): 25-46 CrossRef
  28. Regmi R., Nitisoravut R., Ketchaimongkol J. A decade of plant-assisted microbial fuel cells: looking back and moving forward. Biofuels, 2018, 9(5): 605-612 CrossRef
  29. Pozdnyakov A.I., Pozdnyakova A.D. Еlektrofizika pochv [Soil electrophysics]. Moscow, 2004 (in Russ.).
  30. Kuleshova T.Е., Blokhin Yu.I., Gall’ N.R., Panova G.G. In: Genetica, fiziologia şi ameliorarea plantelor. Ediția 7, 4-5 octombrie 2021, Chişinău. Chişinău, 2021: 38-41 CrossRef (in Russ.).
  31. Logan B.E., Regan J.M. Electricity-producing bacterial communities in microbial fuel cells. TrendsinMicrobiology, 2006, 14(12): 512-518 CrossRef
  32. Strik D.P.B.T.B., Hamelers H.V.M., Snel J.F.H., Buisman C.J.N. Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 2008, 32: 870-876 CrossRef
  33. Bennetto H.P. Electricity generation by microorganisms. Biotechnology Education, 1990, 1(4): 163-168.
  34. Helder M., Chen W.-S., van der Harst E.J., Strik D.P.B.T.B., Hamelers H.B.V., Buisman C.J., Potting J. Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. Biofuels, Bioproducts and Biorefining, 2013, 7(1): 52-64 CrossRef
  35. Timmers R.A., Strik D.P.B.T.B., Hamelers H.V., Buisman C.J. Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 2013, 51: 60-67 CrossRef
  36. Mohan S.V., Mohanakrishna G., Chiranjeevi P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 2011, 102(14): 7036-7042 CrossRef
  37. Rahimnejad M., Adhami A., Darvari S., Zirepour A., Oh S.-E. Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Engineering Journal, 2015, 54(3): 745-756 CrossRef
  38. Gulamhussein M., Randall D.G. Design and operation of plant microbial fuel cells using municipal sludge. Journal of Water Process Engineering, 2020: 38 CrossRef
  39. Wetser K., Sudirjo E., Buisman C., Strik D. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 2015, 137: 151-157 CrossRef
  40. Timmers R.A., Strik D.P.B.T.B., Hamelers H.V.M., Buisman C.J.N. Characterization of the internal resistance of a plant microbial fuel cell. Electrochimca Acta, 2012, 72: 165-171 CrossRef
  41. Helder M., Strik D.P.B.T.B., Timmers R.A., Raes S.M.T., Hamelers, H.V.M., Buisman C.J.N. Resilience of roof-top plant-microbial fuel cells during dutch winter. Biomass and Bioenergy, 2013, 51: 1-7 CrossRef
  42. Ahn Y., Logan B.E. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy and Fuels, 2013, 27(1): 271-276 CrossRef
  43. Bichiashvili T.G., Tsanava V.P., Solov’ev E.V., Marichev G.A. V sbornike: Biofizika rasteniy i fitomonitoring [In: Plant biophysics and phytomonitoring]. Leningrad, 1990: 128-139 (in Russ.).
  44. Kuleshova T.Е., Bushlyakova A.V., Gall’ N.R. Pis’ma v zhurnal tekhnicheskoy fiziki, 2019, 45(5): 6-8 CrossRef (in Russ.).
  45. Azri Y.M., Tou I., Sadi M., Benhabyles L. Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 2018, 15(4): 254-263 CrossRef
  46. Villaseñor J., Capilla P., Rodrigo M.A., Cañizares P., Fernández F.J. Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates. Water Research, 2013, 47(17): 6731-6738 CrossRef
  47. Kuleshova T.Е., Gall’ N.R., Galushko A.S., Panova G.G. Zhurnal tekhnicheskoy fiziki, 2021, 91(3): 510-518 CrossRef (in Russ.).
  48. Liu S., Song H., Wei S., Yang F., Li X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland — Microbial fuel cell systems. Bioresource Technology, 2014, 166: 575-583 CrossRef
  49. Sophia A.C., Sreeja S. Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 2017, 21: 59-66 CrossRef
  50. Timmers R.A., Strik D.P.B.T.B., Arampatzoglou C., Buisman C.J.N., Hamelers H.V.M. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 2012, 108: 60-67 CrossRef
  51. Khudzari J.M., Kurian J, Gariépy Y., Tartakovsky B., Raghavan G.S.V. Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass Bioenergy, 2018, 109: 1-9 CrossRef
  52. Oon Y.-L., Ong S.-A., Ho L.-N., Wong Y.-S., Dahalan F.A., Oon Y.-S., Lehl H.K., Thung W.-E. Synergistic effect of upflow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 2016, 203: 190-197 CrossRef
  53. Gilani S.R., Yaseen A., Zaidi S.R.A., Zahra M., Mahmood Z. Photocurrent generation through plant microbial fuel cell by varying electrode materials. Journal of the Chemical Society of Pakistan, 2016, 38(1): 17-27.
  54. Ueoka N., Sese N., Sue M., Kouzuma A., Watanabe K. Sizes of anode and cathode affect electricity generation in rice paddy-field microbial fuel cells. Journal of Sustainable Bioenergy Systems, 2016, 6(1): 10-15 CrossRef
  55. Chiranjeevi P., Mohanakrishna G., Mohan S.V. Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration. Bioresource Technology, 2012, 124: 364-370 CrossRef
  56. Oon Y.-L., Ong S.-A., Ho L.-N., Wong Y.-S., Dahalan F.-A., Oon Y.-S., Lehl H.K., Thung W.-E., Nordin N. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 2017, 224: 265-275 CrossRef
  57. Mohan S.V., Mohanakrishna G., Chiranjeevi P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 2011, 102(14): 7036-7042 CrossRef
  58. Regmi R., Nitisoravut R., Charoenroongtavee S., Yimkhaophong W., Phanthurat O. Earthen pot-plant microbial fuel cell powered by vetiver for bioelectricity production and wastewater treatment. Clean - Soil, Air, Water, 2018, 46(3): 1700193 CrossRef
  59. Srivastava P., Yadav A.K., Mishra B.K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresource Technology, 2015, 195: 223-230 CrossRef
  60. Hubenova Y., Mitov M. Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry, 2012, 87: 185-191 CrossRef
  61. Wetser K., Sudirjo E., Buisman C.J., Strik D.P.B.T.B. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 2015, 137: 151-157 CrossRef
  62. Nitisoravut R., Regmi R. Plant microbial fuel cells: a promising biosystems engineering. Renewable and Sustainable Energy Reviews, 2017, 76: 81-89 CrossRef
  63. Jiang D., Li B., Jia W., Lei Y. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells. Applied Biochemistry and Biotechnology, 2010, 160: 182 CrossRef
  64. Kuzyakov Y., Domanski G. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431 CrossRef
  65. Hassan M.K., McInroy J.A., Kloepper J.W. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture, 2019, 9(7): 142 CrossRef
  66. Kuzyakov Y. Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382-396 CrossRef
  67. Svarovskaya N.A., Kolesnikov I.M., Vinokurov V.A. Еlektrokhimiya rastvorov еlektrolitov [Electrochemistry of electrolyte solutions]. Moscow, 2017 (in Russ.).
  68. Kuleshova T.Е., Gall’ N.R. Pochvovedenie, 2021, 3: 338-346 CrossRef (in Russ.).
  69. Pasichnyy A.P., Karmanov V.G. Voprosy еksperimental’noy biofiziki i kibernetiki rasteniy. Trudy AFI, 1969, 24: 161-168 (in Russ.).
  70. Kolovskiy R.A. Bioеlektricheskie potentsialy drevesnykh rasteniy [Bioelectric potentials of woody plants]. Novosibirsk, 1980 (in Russ.).
  71. Meleshchenko S.N. Biofizika, 1965, 10: 78-98 (in Russ.).
  72. Kuleshova T.Е., Gall’ N.R., Udalova O.R., Panova G.G. Agrofizika, 2020, 4: 33-39 (in Russ.).
  73. Cabezas A., Pommerenke B., Boon N., Friedrich M.W. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate‐driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 2015, 7(3), 489-497 CrossRef
  74. Guan C.-Y., Tseng Y.-H., Tsang D.C.W., Hu A., Yu C.-P. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Journal of Hazardous Materials, 2019, 365: 137-145 CrossRef
  75. Oon Y.-L., Ong S.-A., Ho L.-N., Wong Y.-S., Oon Y.-S., Lehl H.K., Thung W.-E. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology, 2015, 186: 270-275 CrossRef
  76. Kuleshova T.Е., Gall’ N.R., Galushko A.S., Udalova O.R., Vertebnyy V.E., Panova G.G. Agrarnyy nauchnyy zhurnal, 2021, 1: 24-28 CrossRef (in Russ.).
  77. Panova G.G., Udalova O.R., Kanash E.V., Galushko A.S., Kochetov A.A., Priyatkin N.S., Arkhipov M.V., Chernousov I.N. Zhurnal tekhnicheskoy fiziki, 2020, 90(10): 1633-1639 CrossRef (in Russ.).
  78. Ashok K., Babu M., Jula V., Mullai N.K. Impact of used battery disposal in the environment. Linguistics and Culture Review, 2021, 5(S1): 1276-1286.
  79. Zhang J., Yuan H., Abu-Reesh I.M., He Z., Yuan C. Life cycle environmental impact comparison of bioelectrochemical systems for wastewater treatment. Procedia CIRP, 2019, 80: 382-388 CrossRef
  80. Sudirjo E., Buisman C.J.N., Strik D.P.B.T.B. Marine sediment mixed with activated carbon allows electricity production and storage from internal and external energy sources: a new rechargeable bio-battery with bi-directional electron transfer properties. Frontiers in Microbiology, 2019, 10: 934 CrossRef
  81. Liu B., Yan C., Si W., Sun X., Lu X., Ansorge-Schumacher, M., Schmidt O.G. Ultralong-discharge-time biobattery based on immobilized enzymes in bilayer rolled-up enzymatic nanomembranes. Small, 2018, 14(13): 1704221 CrossRef
  82. Adekunle A., Raghavan V., Tartakovsky B. Real-time performance optimization and diagnostics during long-term operation of a solid anolyte microbial fuel cell biobattery. Batteries, 2019, 5(1): 9 CrossRef
  83. Hussain Z., Zuhra, Rukh G., Zada A., Naz M.Y., Khan K.M., Shukrullah S., Sulaiman S.A. Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables. Cleaner Engineering and Technology, 2021, 5: 100342 CrossRef
  84. Rusyn I.B., Medvediev O.V., Valko B.T. Enhancement of bioelectric parameters of multi-electrode plant–microbial fuel cells by combining of serial and parallel connection. International Journal of Environmental Science and Technology, 2021, 18: 1323-1334 CrossRef
  85. Apollon W., Luna-Maldonado A.I., Kamaraj S.K., Vidales-Contreras J.A., Rodríguez-Fuentes H., Gómez-Leyva J.F., Aranda-Ruíz J. Progress and recent trends in photosynthetic assisted microbial fuel cells: a review. Biomass Bioenergy, 2021, 148: 106028 CrossRef
  86. Apollon W., Kamaraj S.-K., Silos-Espino H., Perales-Segovia C., Valera-Montero L.L., Maldonado-Ruelas V.A., Vázquez-Gutiérreza M.A., Ortiz-Medinab R.A., Flores-Beníteza S., Gómez-Leyva J.F. Impact of Opuntia species plant bio-battery in a semi-arid environment: demonstration of their applications. Applied Energy, 2020, 279: 115788 CrossRef
  87. Apollon W., Valera-Montero L.L., Perales-Segovia C., Maldonado-Ruelas V.A., Ortiz-Medina R.A., Gómez-Leyva F.F., Vázquez-Gutiérrez M.A., Flores-Benítez S., Kamaraj S.K. Effect of ammonium nitrate on novel cactus pear genotypes aided by biobattery in a semi-arid ecosystem. Sustainable Energy Technologies and Assessments, 2022, 49: 101730 CrossRef
  88. Brunelli D., Tosato P., Rossi M. Flora health wireless monitoring with plant-microbial fuel cell. Procedia Engineering, 2016, 168: 1646-1650 CrossRef
  89. Jayaraman P.P., Yavari A., Georgakopoulos D., Morshed A., Zaslavsky A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors, 2016, 16(11): 1884 CrossRef
  90. Schievano A., Colombo A., Grattieri M., Trasatti S.P., Liberale A., Tremolada P., Pino C., Cristiani P. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. Journal of Power Sources, 2017, 340: 80-88 CrossRef
  91. Osorio-de-la-Rosa E., Vazquez-Castillo J., Castillo-Atoche A., Heredia-Lozano J., Castillo-Atoche A., Becerra-Nunez G., Barbosa R. Arrays of plant microbial fuel cells for implementing self-sustainable wireless sensor networks. IEEE Sensors Journal, 2021, 21(2): 1965-1974 CrossRef
  92. Koók L., Rózsenberszki T., Nemestóthy N., Bélafi-Bakó K., Bakonyi P. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization. Journal of Cleaner Production, 2016, 112(5): 4406-4412 CrossRef
  93. Wang X., Feng Y.J., Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science & Technology, 2008, 57(7): 1117-1121 CrossRef
  94. Dong Y., Qu Y., He W., Du Y., Liu J., Han X., Feng Y. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresouce Technology, 2015, 195: 66-72 CrossRef
  95. An Z., Feng Q., Zhao R., Wang X. Bioelectrochemical methane production from food waste in anaerobic digestion using a carbon-modified copper foam electrode. Processes, 2020, 8(4): 416 CrossRef
  96. Pushkar P., Mungray A.K. Real textile and domestic wastewater treatment by novel cross-linked microbial fuel cell (CMFC) reactor. Desalination and Water Treatment, 2016, 57(15): 6747-6760 CrossRef
  97. Nancharaiah Y.V., Venkata Mohan S., Lens P.N.L. Metals removal and recovery in bioelectrochemical systems: a review. Bioresource Technology, 2015, 195: 102-114 CrossRef
  98. Yu H., Zhao Q., Liu X., Meng F., Ruan L., Sun T., Liu W., Zhu Y., Li W., Meng F., Liang Z. Enhanced chromium recovery and simultaneous sludge degradation in a novel bioelectrochemical system assembled with bio/abio-cathodes. Separation and Purification Technology, 2020, 250: 117229 CrossRef
  99. Nancharaiah Y.V., Lens P.N.L., Mohan S. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresource Technology, 2016, 215: 173-185 CrossRef
  100. Yang N., Zhang G., Luo H., Xiong X., Li D. Integrated simultaneous nitrification/denitrification and comammox consortia as efficient biocatalysts enhance treatment of domestic wastewater in different up-flow bioelectrochemical reactors. Bioresource Technology, 2021, 339: 125604 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)