doi: 10.15389/agrobiology.2021.3.578eng

UDC: 635.7:577.19:57.044

We are thankful to Pavel Covali for critically reading the Russian version of this manuscript.
The authors gratefully acknowledge the financial support provided by Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.



K. Esmaeilzadeh-Salestani1, 5 , A. Riahi-Madvar2, 3, M.A. Maziyar4,
B. Khaleghdoust5, E. Loit5

1Department of Biotechnology, Faculty of Science and Modern Technology, Graduate University of Advanced Technology, P.O. Box 117-76315, Kerman, Iran, e-mail (✉ corresponding author);
2Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, P.O. Box 117-76315, Kerman, Iran, e-mail;
3Department of Molecular and Cell Biology, Faculty of Basic Sciences, Kosar University of Bojnord, P.O. Box 94156-15458, Bojnord, Iran;
4Department of Horticulture, Agriculture faculty, University of Guilan, P.O. Box 1841, Rasht, Iran, e-mail;
5Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, EE51014 Tartu, Estonia, e-mail,

Esmaeilzadeh-Salestani K.
Khaleghdoust B.
iahi-Madvar A.
Loit E.
Maziyar M.A.

Received August 18, 2020

Rosmarinic acid (RA), one of the most important active ingredients of lemon balm (Melissa officinalis L.), exhibits antiviral, antibacterial, antioxidative and anticancer properties. Furthermore, it can improve functionality in baking process. Cu acts as a cofactor of several proteins and plays a key role in photosynthesis, respiration, lignin synthesis, response to oxidative stress and cell wall metabolism, but can be toxic to plants in high concentrations. We hypothesized that abiotic stresses, as one of the external factors inducing the defense mechanism of plants, may contribute to the production of secondary metabolites, especially RA, in representatives of the Lamiaceae family. In current study, RA accumulation, expression of tyrosine aminotransferase gene (TAT), contents of flavonoid and anthocyanin as well as antioxidant enzymes activities were investigated in 45-day-old M. officinalis seedlings after treatment with different concentrations of Cu2+ (0, 5, 10, 20, and 30 mM). Samples were collected and analyzed after 8 and 16 hours of treatment. Lower concentrations of Cu2+ positively affected RA accumulation at both aforementioned treatment times, which is consistent with the increase in TAT gene expression profile. Flavonoid, anthocyanin and soluble protein contents of the seedlings significantly decreased (except at 20 and 30 µM Cu2+-treated seedlings after 8 hours). RA content and expression of TAT gene decreased significantly at the highest concentration of Cu2+ for 16 hours. Concurrently, elevated levels of superoxide dismutase and peroxidase activities were measured in these seedlings. Latter can indicate that lower concentrations of Cu2+ cause oxidative stress. Reactive oxygen species (ROS), which act as signal molecules, are accumulated and due to their positive effects on the expression of TAT gene more RA is produced. In contrast, at the highest concentration of copper ions, ROS suppressed TAT gene expression and prevented the degradation of the gene product.

Keywords: antioxidant enzyme, superoxide dismutase, catalase, peroxidase, Melissa officinalis, rosmarinic acid, flavonoids, anthocyanins, tyrosine aminotransferase.



  1. Petersen M., Simmonds M.S. Rosmarinic acid. Phytochemistry, 2003, 62(2): 121-125 CrossRef
  2. Dastmalchi K., Dorman H.T.D., Oinonen P.P., Darwis Y., Laakso I., Hiltunen R. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT-Food Science and Technology, 2008, 41(3): 391-400 CrossRef
  3. Rocha J., Eduardo-Figueira M., Barateiro A., Fernandes A., Brites D., Bronze R., Duarte C.M., Serra A.T., Pinto R., Freitas M., Fernandes E., Silva-Lima B., Mota-Filipe H., Sepodes B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology, 2015, 116(5): 398-413 CrossRef
  4. Swarup V., Ghosh J., Ghosh S., Saxena A., Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrobial Agents and Chemotherapy, 2007, 51(9): 3367-3370 CrossRef
  5. Nascimento G.G.F., Locatelli J., Freitas P.C., Silva G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 2000, 31(4): 247-256 CrossRef
  6. Capecka E., Mareczek A., Leja M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 2005, 93(2): 223-226 CrossRef
  7. Link A., Balaguer F., Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochemical Pharmacology, 2010, 80(12): 1771-1792 CrossRef
  8. Sanbongi C., Takano H., Osakabe N., Sasa N., Natsume M., Yanagisawa R., Inoue K.I., Sadakane K., Ichinose T., Yoshikawa T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clinical & Experimental Allergy, 2004, 34(6): 971-977 CrossRef
  9. Caleja C., Barros L., Barreira J.C.M., Ciric A., Sokovic M., Calhelha R.C., Beatriz M., Oliveira P.P., Ferreira I.C.F.R. Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes. Food Chemistry, 2018, 250: 67-74 CrossRef
  10. Gertlowski C., Petersen M. Influence of the carbon source on growth and rosmarinic acid production in suspension-cultures of Coleus blumei. Plant Cell Tissue and Organ Culture, 1993, 34(2): 183-190 CrossRef
  11. Krzyzanowska J., Czubacka A., Pecio L., Przybys M., Doroszewska T., Stochmal A., Oleszek W. The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha piperita cell suspension cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 108(1): 73-81 CrossRef
  12. Sahu R., Gangopadhyay M., Dewanjee S. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiologiae Plantarum, 2013, 35(5): 1473-1481 CrossRef
  13. Yan Q., Shi M., Ng J., Wu J.Y. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science, 2006, 170(4): 853-858 CrossRef
  14. Santiago L.J.M., Louro R.P., De Oliveira D.E. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Annals of Botany, 2000, 86(5): 1023-1032 CrossRef
  15. Basak M., Sharma M., Chakraborty U. Biochemical responses of Camellia sinensis (L.) O. Kuntze to heavy metal stress. Journal of Environmental Biology, 2001, 22(1): 37-41.
  16. Yruela I. Copper in plants. Brazilian Journal of Plant Physiology, 2005, 17(1): 145-156 CrossRef
  17. Marschner H. Marschner’s mineral nutrition of higher plants. P. Marschner (ed.). Academic Press, 2011.
  18. Gaetke L.M., Chow C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003, 189(1-2): 147-163 CrossRef
  19. Sims J.T., Johnson G.V. Micronutrient soil tests. In: Micronutrients in agriculture. J.J. Mortvedt (ed.). SSSA Book Series, 1991 (dol: 10.2136/sssabookser4.2ed.c12">CrossRef
  20. Groppa M.D., Tomaro M.L., Benavides M.P. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals, 2007, 20(2): 185-195 CrossRef
  21. Ignat I., Volf I., Popa V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 2011, 126(4): 1821-1835 CrossRef
  22. Trouillas P., Sancho-Garcia J.C., De Freitas V., Gierschner J., Otyepka M., Dangles O. Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chemical Reviews, 2016, 116(9): 4937-4982 CrossRef
  23. Lattanzio V., Lattanzio V.M., Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Phytochemistry: Advances in Research. Research Signpost, Trivandrum, India, 2006: 23-67.
  24. Laura A., Moreno-Escamilla J.O., Rodrigo-García J., Alvarez-Parrilla E. Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables. E. Yahia, A. Carrillo-Lopez (eds.). Woodhead Publishing, 2019: 253-271.
  25. Cushnie T.P., Hamilton V.E., Lamb A.J. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiological Research, 2003, 158(4): 281-289 CrossRef
  26. Aksoy L., Kolay E., Agilonu Y., Aslan Z., Kargioglu M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi Journal of Biological Sciences, 2013, 20(3): 235-239 CrossRef
  27. Esmaeilzadeh-Salestani K., Riahi-Madvar A. Effects of iron ions on rosmarinic acid production and antioxidant system in Melissa officinalis L. seedlings. Annual Research & Review in Biology, 2014, 4(22): 3359-3372 CrossRef
  28. Nasiri-Bezenjani M.A., Riahi-Madvar A., Baghizadeh A., Ahmadi A.R. Rosmarinic acid production and expression of tyrosine aminotransferase gene in Melissa officinalis seedlings in response to yeast extract. Journal of Agricultural Science and Technology, 2014, 16(4): 921-930.
  29. Al-Bader M.D. Estrogen receptors alpha and beta in rat placenta: detection by RT-PCR, real time PCR and Western blotting. Reproductive Biology and Endocrinology, 2006, 4: 13 CrossRef
  30. Krizek D.T., Britz S.J., Mirecki R.M. Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum, 1998, 103(1): 1-7 CrossRef
  31. Krizek D.T., Kramer G.F., Upadhyaya A., Mirecki R.M. UV‐B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum, 1993, 88(2): 350-358 CrossRef
  32. Sharma P., Dubey R.S. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 2005, 46(3): 209-221 CrossRef
  33. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1): 248-254 CrossRef
  34. Giannopolitis C.N., Ries S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314 CrossRef
  35. Dhindsa R.S., Plumbdhindsa P., Thorpe T.A. Leaf senescence: correlated with increased levels of membrane-permeability and lipid-peroxidation, and decreased levels of superoxide-dismutase and catalase. Journal of Experimental Botany, 1981, 32(1): 93-101 CrossRef
  36. Plewa M.J., Smith S.R., Wagner E.D. Diethyldithiocarbamate suppresses the plant activation of aromatic-amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 247(1): 57-64 (dol: 10.1016/0027-5107(91)90033-K">CrossRef
  37. Ru M., Wang K., Bai Z., Peng L., He S., Wang Y., Liang Z. A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Scientific Reports, 2017, 7: 4892 CrossRef
  38. Roitto M., Rautio P., Julkunen-Tiitto R., Kukkola E., Huttunen S. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environmental Pollution, 2005, 137(3): 603-609 CrossRef
  39. Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995, 7(7): 1085-1097 CrossRef
  40. Romero-Puertas M.C., Corpas F.J., Rodriguez-Serrano M., Gomez M., Del Rio L.A., Sandalio L.M. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology, 2007, 164(10): 1346-1357 CrossRef
  41. Lombardi L., Sebastiani L. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 2005, 168(3): 797-802 CrossRef
  42. Zhou M.L., Zhu X.M., Shao J.R., Wu Y.M., Tang Y.X. Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied Microbiology and Biotechnology, 2010, 88(3): 737-750 CrossRef
  43. Memelink J., Verpoorte R., Kijne J.W. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 2001, 6(5): 212-219 CrossRef
  44. Maksymiec W., Wianowska D., Dawidowicz A.L., Radkiewicz S., Mardarowicz M., Krupa Z. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. Journal of Plant Physiology, 2005, 162(12): 1338-1346 CrossRef
  45. Mizukami H., Ogawa T., Ohashi H., Ellis B.E. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Reports, 1992, 11(9): 480-483 CrossRef
  46. Szabo E., Thelen A., Petersen M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Reports, 1999, 18(6): 485-489 CrossRef
  47. Park S.U., Uddin M.R., Xu H., Kim Y.K., Lee S.Y. Biotechnological applications for rosmarinic acid production in plant. African Journal of Biotechnology, 2008, 7(25): 4959-4965.
  48. Karuppanapandian T., Moon J.C., Kim C., Manoharan K., Kim W. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 2011, 5(6): 709-725.
  49. Achamlale S., Rezzonico B., Grignon-Dubois M. Rosmarinic acid from beach waste: isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chemistry, 2009, 113(4): 878-883 CrossRef
  50. Garnczarska M., Ratajczak L. Metabolic responses of Lemna minor to lead ions II. Induction of antioxidant enzymes in roots. Acta Physiologiae Plantarum, 2000, 22(4): 429-432 CrossRef
  51. Fukai T., Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling, 2011, 15(6): 1583-1606 CrossRef
  52. Jimenez A., Hernandez J.A., Del Rio L.A., Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 1997, 114(1): 275-284 CrossRef
  53. Khatun S., Ali M.B., Hahn E.-J., Paek K.-Y. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 2008, 64(3): 279-285 CrossRef
  54. Miteva E., Hristova D., Nenova V., Maneva S. Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplast pigments. Scientia Horticulturae, 2005, 105(3): 343-358 CrossRef
  55. Posmyk M.M., Kontek R., Janas K.M. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 2009, 72(2): 596-602 CrossRef
  56. Wang S.H., Yang Z.M., Yang H., Lu B., Li S.Q., Lu Y.P. Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 2004, 45(3): 203-212.
  57. Choudhary M., Jetley U.K., Abash Khan M., Zutshi S., Fatma T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicology and Environmental Safety, 2007, 66(2): 204-209 CrossRef
  58. Zhang B., Li X., Chen D., Wang J. Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma, 2013, 250(1): 103-110 CrossRef
  59. Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends In Plant Science, 2004, 9(10): 490-498 CrossRef
  60. Mishra S., Srivastava S., Tripathi R.D., Govindarajan R., Kuriakose S.V., Prasad M.N. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 2006, 44(1): 25-37 CrossRef
  61. Singh D., Nath K., Sharma Y.K. Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology, 2007, 28(2 Suppl): 409-414.
  62. Singh N., Ma L.Q., Srivastava M., Rathinasabapathi B. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science, 2006, 170(2): 274-282 CrossRef







Full article PDF (Rus)