doi: 10.15389/agrobiology.2021.3.511eng

UDC: 633.11:632.937:57.044



I.I. Novikova , E.V. Popova, I.L. Krasnobaeva, N.M. Kovalenko

All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (corresponding author ✉),,,

Novikova I.I.
Krasnobaeva I.L.
Popova E.V.
Kovalenko N.M.

Received July 27, 2020

Microbiological preparations form the basis of modern technologies phytosanitary optimization of agroecosystems, therefore, increasing their efficiency in protecting crops from a wide range of plant pathogens is an urgent task of crop production. The All-Russian Research Institute of Plant Protection (VIZR) has developed Vitaplan, a biological product based on the composition of two strains, the Bacillu subtilis VKM B-2604D and B. subtilis VKM B-2605D with a different composition of active complexes and a mechanism of action that are highly effective against a wide range of plant pathogens. The aim of the study is to substantiate increasing the biological effectiveness of new Vitaplan formulations supplemented with chitosan as an inducers of plant resistance. In this work, for the first time, two new formulations were developed, the Vitaplan, CF + colloidal chitin and the Vitaplan, CF + 0.1 % chitosan salicylate with increased antagonistic and elicitor activity compared to the original biological Vitaplan, CF. The effect of disease resistance inducers, such as colloidal chitin and chitosan salicylate, on the biological activity of Vitaplan has been investigated. The colloidal chitin (1 %) added to the deep culture medium increased the antagonistic activity of B. subtilis VKM B-2604D and VKM B-2605D against the tomato bacterium Clavibacter michiganensis subsp. Michiganensis (Smith) Davis et al. (strain 101) and the fungus Alternaria solani Sorauer, and also ensured effective suppression of the growth of Cochliobolus sativus mycelium up to 84.9-88.1 % on day 5 and day 7 of the experiment, which is comparable to the efficiency of Vitaplan CF (80.9-87.5 %, respectively). Chitosan salicylate at a concentration of 0.1 % had a moderate fungistatic activity, with only 36.5-46.0 % suppression of the growth of the C. sativus mycelium. The study of the immunomodulatory activity of various Vitaplan CF preparative forms in protecting wheat against the brown spot pathogen Cochliobolus sativus (S. Ito & Kurib.) was carried out under various infectious loads. Depending on the infectious load of the pathogen, preliminary spraying of wheat plants with Vitaplan, CF at a dilution of 1:10 followed by infection with the brown spot pathogen reduced the leaf lesion area to 50-80 % compared to 65-100 % in control. Adding 1.0 % colloidal chitin to the culture medium for the producer strains reduced leaf damage to 40-50 %, which indicates a higher immunomodulatory activity of this form of Vitaplan compared to Vitaplan CF at a dilution of 1:10. Chitosan salicylate proved to be an effective inducer of disease resistance, reducing damage to wheat plants by dark brown spots to 10-20 %, depending on the infectious load. The addition of chitosan salicylate at a concentration of 0.1 % to original form Vitaplan, CF at a 1:10 dilution also had a positive effect on the antagonist with a 2.0-2.5-fold increase of its biological activity. The biological effectiveness of the new formulation Vitaplan CF (1:10) + chitosan salicylate (0.1 %) in protecting wheat from brown spot when spraying plants is determined by two mechanisms, i.e., by i) direct pathogen suppression due to antibiotics and enzymes the B. subtilis VKM B-2604D and B. subtilis VKM B-2605D produce, and ii) through the induction of plant systemic resistance. The chitosan salicylate in the Vitaplan biological increases the inducing activity of this new formulation compared to the original form. Thus, the prospect of combining active selected strains of microbial antagonists of plant pathogens and chitosan complexes to increase the biological efficiency and expand the spectrum of action of drugs has been experimentally confirmed and theoretically substantiated.

Keywords: biological control, Bacillus subtilis, Vitaplan formulations, fungistatic activity, antagonistic effect, chitosan, chitin, systemic resistance, Triticum aestivum L., Cochliobolus sativus.



  1. Pavlyushin V.A., Tyuterev S.L., Popova E.V., Novikova I.I., Bykova G.A., Domnina N.S. Biotekhnologiya, 2010, 4: 69-80 (in Russ.).
  2. Beneduzi A., Ambrosini A., Passaglia L.M.P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 2012, 35(4): 1044-1051 CrossRef
  3. Kumar P., Dubey R.C., Maheshwari D.K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167(1): 493-499 CrossRef
  4. Novikova I.I. Materialy nauchno-prakticheskoi konferentsii «Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva» [Proc. Int. Conf. «Technologies and technical means for crop and livestock production»]. St. Petersburg, 2019, vyp. 2(99): 183-194 CrossRef (in Russ.).
  5. Ye Y.F., Li Q.Q., Fu G., Yuan G.Q., Miao J.H., Lin W. Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. Journal of Integrative Agriculture,2012, 11(9): 90-99 CrossRef
  6. Dunlap C.A., Schisler D.A., Bowman M.J., Rooney A.P. Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus lavescens for control of Fusarium head blight. Plant Gene, 2015, 2: 1-9 CrossRef
  7. Zalila-Kolsi I., Mahmoud A.B., Ali H., Sellami S., Nasfi Z., Tounsi S., Jamoussi K. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 2016, 192(6): 148-158 CrossRef
  8. Yang L., Quan X., Xue B., Goodwin P.H., Lu S., Wang J., Du W., Wu C. Isolation and identiication of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biological Control, 2015, 85: 52-58 CrossRef
  9. Gao X., Gong Y., Huo Y., Han Q., Kang Z., Huang L. Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. Journal of Biomedicine and Biotechnology, 2015(6): 462645 CrossRef
  10. Li H., Zhao J., Feng H., Huang L., Kang Z. Biological control of wheat stripe rust by an endophytic Bacillus subtilis strain E1R-j in greenhouse and field trials. Crop Protection, 2013, 43: 201-206 CrossRef
  11. Kalappanavar I.K., Patidar R.K., Kulkarni S. Management strategies of leaf rust of wheat caused by Puccinia recondita f. sp. tritici Rob. ex. Desm. Karnataka Journal of Agricultural Sciences, 2008, 21(1): 61-64.
  12. Reiss A., Jørgensen L.N. Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade®ASO (Bacillus subtilis strain QST713). Crop Protection, 2017, 93: 1-8 CrossRef
  13. Junior I., Schafer J.T., Corrêa B.O., Funck G.D., Moura A.B. Expansion of the biocontrol spectrum of foliar diseases in rice with combinations of rhizobacteria. Revista CiênciaAgronômica, 2017, 48(3): 513-522 CrossRef
  14. Akram W., Anjum T., Ali B. Searching ISR determinant/s from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. BioControl, 2015, 60: 271-280 CrossRef
  15. Tan S.Y., Jiang Y., Song S., Huang J.F., Ling N., Xu Y.C., Shen Q.R. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Protection, 2013, 43: 134-140 CrossRef
  16. Cao Y., Xu Z., Ling N., Yuan Y., Yang X., Chen L., Shen B., Shen Q. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae, 2012, 135: 32-39 CrossRef
  17. Lee K.J., Kamala-Kannan S., Han S.S., Seong C.K., Lee G.W. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2008, 24(7): 1139-1145 CrossRef
  18. Cortez F.M., Chan-Cupul W., Buenrostro Nava M., Hernández-Ortega H. A., Manzo-Sánchez G., Galindo-Velasco E. Biological control of late leaf rust disease (Puccini astrum americanum (Farl.) Arthur) in raspberry (Rubus idaeus L.) using two biological products: Bacillus subtilis (Fungizard®) and Larrea tridentata botanic extract (CleanCrop®) under screenhouse conditions. Idesia (Arica), 2019, 37(1): 125-133 CrossRef
  19. Wang X.Q, Zhao D.L., Shen L. L., Jing C L., Zhang C.S Application and mechanisms of Bacillus subtilis in biological control of plant disease. In: Role of rhizospheric microbes in soil. V.S. Meena (ed.). Springer, Singapore, 2018: 225-250 CrossRef
  20. Wang L.-Y., Xie Y.-S., Cui Y.-Y., Xu J., He W., Chen H.-G., Guo J.-H. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum. Microbiological Research, 2015, 177: 34-42 CrossRef
  21. Novikova I.I., Boikova I.V., Pavlyushin V.A., Zeiruk V.N., Vasil'eva S.V., Azizbekyan R.R., Kuznetsova N.I. Vestnik zashchity rastenii, 2013, 4: 12-21 (in Russ.).
  22. Li S., Zhang N., Zhang Z., Luo J., Shen B., Zhang R., Shen Q. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biology and Fertility of Soils, 2013, 49(3): 295-303 CrossRef
  23. Yu X., Ai C., Xin L., Zhou G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 2011, 47(2): 138-145 CrossRef
  24. Wang T., Liang Y., Wu M., Chen Z., Lin J., Yang L. Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 2015, 23(4): 744-754 CrossRef
  25. Sidorova T.M., Asaturova A.M., Khomyak A.I. Biologically active metabolites of Bacillus subtilis and their role in the control of phytopathogenic microorganisms. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(1): 29-37 CrossRef
  26. Aktuganov G.E., Galimzyanova N.F., Melent'ev A.I., Kuz'mina L.Yu. Mikrobiologiya, 2007, 76(4): 471-479 (in Russ.).
  27. Van der Ent S., van Wees S.C.M., Pieterse C.M.J. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70(13-14): 1581-1588 CrossRef
  28. Van Loon L.C. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology,2007, 119(3): 243-254 CrossRef
  29. De Vleesschauwer D., Höfte M. Rhizobacteria-induced systemic resistance. Advances in Botanical Research, 2009, 51: 223-281 CrossRef
  30. Ryu C.M., Farag M.A., Hu C.H., Reddé M.S., Kloepper J.W., Paré P.W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 2004, 134(3): 1017-1026 CrossRef
  31. Novikova I.I., Shenin Y.D. Isolation, identification, and antifungal activity of a Gamair complex formed by Bacillus subtilis M-22, a producer of a biopreparation for plant protection from mycoses and bacterioses. Applied Biochemistry and Microbiology, 2011, 47(9): 817-826 CrossRef
  32. Badawy M.E.I., Rabea E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 2011: 460381 CrossRef
  33. Tyuterev C.L. Vestnik zashchity rastenii, 2015, 1: 3-13 (in Russ.).
  34. Varlamov V.P., Nemtsev S.V., Tikhonov V.E. Khitin i khitozan: priroda, poluchenie i primenenie [Chitin and chitosan: nature, production and use]. Moscow, 2010 (in Russ.).
  35. Vasyukova N.I., Ozeretskovskaya O.L. Prikladnaya biokhimiya i mikrobiologiya, 2007, 43(4): 405-411 (in Russ.).
  36. Popova E.V., Kovalenko N.M., Sokornova S.V., Tyuterev S.L., Domnina N.S. Prikladnaya biokhimiya i mikrobiologiya, 2018, 54(5): 540-545 CrossRef (in Russ.).
  37. Muzzarelli R.A.A. Chitin. Pergamon Press, Oxford, 1977.
  38. Roberts W.K., Selitrennikoff C.P. Plant and bacterial chitinases differin antifungal activity. Journal of General Microbiology, 1988, 134(1): 169-176 CrossRef
  39. Mikhailova L.A., Mironenko N.V., Kovalenko N.M. Zheltaya pyatnistost' pshenitsy. Metodicheskie ukazaniya po izucheniyu populyatsii vozbuditelya zheltoi pyatnistosti Pyrenophora tritici-repentis i ustoichivosti sortov [Wheat yellow spot. Guidelines for the study of populations of the pathogen Pyrenophora tritici-repentis and the resistance of varieties]. St. Petersburg, 2012 (in Russ.).
  40. Maksimov I.V., Abizgil'dina R.R., Sorokan' A.V., Burkhanova G.F. Prikladnaya biokhimiya i mikrobiologiya, 2014, 50(2): 197-202 CrossRef (in Russ.).
  41. Veselova S.V., Nuzhnaya T.V., Maksimov I.V. Role of jasmonic acid in interaction of plants with plant growth promoting rhizobacteria during fungal pathogenesis. In: Jasmonic acid: biosynthesis, functions and role in plant development. Morrison L. (ed.). Nova Sciense, New York, 2015.
  42. Aloni R., Aloni E., Langhans M., Ullrich C.I. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 2006, 97(5): 883-893 CrossRef
  43. Yarullina L.G., Kasimova R.I., Ibragimov R.I., Akhatova A.R., Umarov I.A., Maksimov I.V. Qualitative and quantitative changes of potato tuber proteome under the influence of signal molecules and infection with Phytophthora infestans. Applied Biochemistry and Microbiology,2016, 52(1): 71-78 CrossRef
  44. Vandeputte O., Öden S., Mol A., Vereecke D., Goethals K., El Jaziri M., Prinsen E. Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus faseians is controlled by compounds specific to infected plant tissues. Applied and Environmental Microbiology, 2005, 71(3): 1169-1177 CrossRef
  45. Iriti M., Faoro F. Chitosan as a MAMP, searching for a PRR. Plant Signaling & Behavior, 2009, 4(1): 66-68 CrossRef
  46. Deepmala K., Hemantaranjan A., Bharti S., Nishant Bhanu A. A future perspective in crop protection: chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 2014, 1(1): 23-30 CrossRef
  47. El Hadrami A., Adam L.R., El Hadrami I., Daayf F. Chitosan in plant protection. Marine Drugs, 2010, 8(4): 968-987 CrossRef
  48. Zhang S., Moyne A.-L., Reddy M.S, Joseph W., Kloepper J.W. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control, 2002, 25(3): 288-296 CrossRef
  49. Saikia R., Singh T., Kumar R., Srivastava J., Srivastava A.K., Singh K., Arora D.K. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiological Research,2003, 158(3): 203-213 CrossRef
  50. Rajkumar M., Lee K.J., Freitas H. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African Journal of Botany, 2008, 74(2): 268-273 CrossRef
  51. Abdel-Kader M.M., El-Mougy N.S., Aly M.D.E., Lashin S.M. Integration of biological and fungicidal alternatives for controlling foliar diseases of vegetables under greenhouse conditions. International Journal of Agriculture and Forestry, 2012, 2(2): 38-48 CrossRef
  52. Rajendran L., Samiyappan R. Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani. Plant Pathology Journal,2008, 7(1): 1-12 CrossRef
  53. Kolesnikov L.E., Popova E.V., Novikova I.I., Priyatkin N.S., Arkhipov M.V., Kolesnikova Yu.R., Potrakhov N.N., Van Duijn B., Gusarenko A.S. Multifunctional biologics which combine microbial anti-fungal strains with chitosan improve soft wheat (Triticum aestivum L.) yield and grain quality. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 1024-1040 CrossRef







Full article PDF (Rus)