PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.588eng

UDC: 633.88:577.11

 

ACCUMULATION OF BIOACTIVE SUBSTANCES AND CHEMICAL ELEMENTS IN Echinacea purpurea (L.) Moench MEDICINAL HERB AS INFLUENCED BY SOIL APPLICATION OF COPPER, AN ESSENTIAL MICROELEMENT

N.N. Zharkova, V.V. Sukhotskaya, Yu.I. Ermokhin

Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail nn.zharkova@omgau.org (✉ corresponding author), suhotskay-1990@mail.ru, yui.ermokhin@omgau.org

ORCID:
Zharkova N.N. orcid.org/0000-0003-2970-328X
Ermokhin Yu.I. orcid.org/0000-0002-1727-6447
Sukhotskaya V.V. orcid.org/0000-0001-8807-1062

Received November 11, 2019

 

Copper, an essential element in human metabolism, is a trace element for plants and animals. It plays a significant role in physiological processes (i.e. in photosynthesis, respiration, carbohydrate and protein metabolism), increases productivity, improves plant quality characteristics and increases resistance to adverse factors. A particular concern is the need to apply copper fertilizers in the biogeochemical provinces with Cu deficit in the soil. Echinacea purpurea (L.) Moench is one of the best-selling plant-based medicines in many developed countries around the world. It has been widely used in medicine and veterinary medicine for immunocorrection. However, publications on the effect of trace elements on the yield and content of biologically active substances in the medicinal raw materials of the E. purpurea are very few. Our study presents the results confirming the role of copper fertilizers in increasing the content of biologically active substances in the medicinal raw materials of E. purpurea, as well as in its enrichment with certain trace elements. The work aimed to assess the influence of essential microelement (Cu) on the accumulation of certain biologically active substances (tanning substances, carotene, vitamin C) and chemical elements (zinc and copper) in the medicinal raw material of E. purpurea variety Znakhar. The plot tests were run in the conditions of the southern forest-steppe of Western Siberia (an experimental field of Omsk Stolypin State Agrarian University, Omsk, May-September 2016-2018). The experiment design was as follows: absolute control (without fertilizers), N125 (N-based fertilizer), N125 + 0.25MAC Cu (the maximum allowed concentration) (2.3 kg a.m./ha), N125 + 0.5MAC Cu (4.7 kg a.m./ha), N125 + 0.75MAC Cu (7.0 kg a.m./ha), N125 + 1MAC Cu (9.4 kg a.m./ha). The soil of the test site was meadow chernozem, low-power, low humus, medium loamy with a 5.2 % humus content, 10.0 mg/kg nitrate nitrogen, 394 mg/kg mobile phosphorus, 749 mg/kg exchange potassium; pH 6.5-6.8. The mobile copper level in the soil was 0.3 mg/kg. The experiment was arranged in four replicates, plots were systematically located in several tiers, with a plot size of 10 m2. Copper acetate (CH3COO)2Cu (32 %) was used as Cu fertilizer, ammonium nitrate (34.4 %) was an N-based fertilizer. The crop was planted at the end of May 2016, 24 plants per plot, with 70×60 cm spacing. Fertilizers were manually incorporated into the soil to a 10-15 cm depth before planting (at tilling), and uniformly distributed throughout the entire plot area. Plants were collected in September, during E. purpurea mass flowering phase. Tannings, carotene, and ascorbic acid were quantified in the medicinal raw material of E. purpurea. The concentration of trace elements (copper, zinc) in powdered herb samples was determined by atomic absorption spectroscopy. We have found out that a single application of copper fertilizers contributed to accumulation of tanning substances, ascorbic acid and carotene in the herb raw material. On average, over three years of our research, the level of bioactive substances in the raw material (grass) increased reliably (p < 0.05), to 16.6 mg% for tanning, to 5.8 mg% for ascorbic acid, and to 51.2 mg/kg for carotene. A copper acetate dose of 9.4 kg a.m./ha resulted in maximum concentration of the bioactive substances. Each 1 kg of Cu fertilizer increased the content of tannins by 0.51 mg%, ascorbic acid by 0.29 mg%, and carotene by 2.56 mg/kg (p < 0.05). Thus, the use of (CH3COO)2Cu contributes to an improved medicinal value of E. purpurea. The copper fertilizer dosages correlated tightly with the level of mobile zinc and copper in medicinal raw materials (r = 0.98, p < 0.05). Each 1 kg of copper added with N125 increased the content of mobile copper and zinc in E. purpurea raw material by 0.23 and 1.15 mg/kg, respectively. These values are b coefficients that evaluate the effects of copper fertilizers and, together with the regression equations we obtained, allow practitioners to draw up protocols for applying micronutrient fertilizers in meadow chernozem soils at an early stage of E. purpurea plant development in specific growing conditions.

Keywords: Echinacea purpurea (L.) Moench, meadow chernozem soil, essential microelements, copper, zinc, bioactive substances, southern forest-steppe, Western Siberia.

 

REFERENCES

  1. Jamshidi-Kia F., Lorigooini Z., Amini-Khoei H. Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 2018, 7(1): 1-7 CrossRef
  2. Hariharan P., Subburaju T. Medicinal plants and its standardization — a global and industrial overview. Global Journal of Medicinal Plant Research, 2012, 1(1): 10-13.
  3. Nirmal S.A., Pal S.C., Otimenyin S.O., Aye T., Elachouri M., Kundu S.K., Thandavarayan R.A., Mandal S.C. Contribution of herbal products global market. The Pharma Review, 2013: 95-104.
  4. Bogoyavlenskii A.P., Aleksyuk P.G., Turmagambetova A.S., Berezin V.E. Farmatsevticheskie nauki, 2013, 6(5): 1184-1187 (in Russ.).
  5. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 2013, 4: 177 CrossRef
  6. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. CRC Press, Boca Raton, London, New York, Washington, D.C., 2001.
  7. Aristarkhov A.N., Bushuev N.N., Safronova K.G. Agrokhimiya, 2012, 9: 26-40 (in Russ.).
  8. Dimpka C.O., Bindraban P. Fortification on micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 2016, 36: 1-26 CrossRef
  9. Valença A.W., Bake A., Brouwer I.D., Giller K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa author links open overlay panel. Global Food Security,2017, 12: 8-14 CrossRef
  10. Vavoulidou E.E., Avramides E.J., Papadopoulos P., Dimirkou A.T., Charoulis A., Konstantinidou-Doltsinis S. Copper content in agricultural soils related to cropping systems in different regions of Greece. Communications in Soil Science and Plant Analysis, 2005, 36(4-6): 759-773 CrossRef
  11. Pavelkova M., Vysloužil J., Kubova K., Vetchy D. Biological role of copper as an essential trace element in the human organism. Czech and Slovak Pharmacy, 2018, 67(4): 143-153.
  12. Broadley M., Brown P., Buerkert A., Camak I., Cooper J., Eichert T., Engels C., Fernandez V., Kirkby T., Eckhard G., Hawkesford M., Horst W., Huber D.,  Kichey T., Ludwi B., Jian Feng Ma.,  Marschner P., Neumann E., Neumann G., Schlecht H., Rengel Z., Romheld V., Schjoerring J., Moller I.S., Weinmann M., White P., Wiesler F., Zhao F. Marschner's mineral nutrition of higher plants. Elsevier Ltd., 2012 CrossRef
  13. Braz J. Copper in plants. Brazilian Journal of Plant Physiology, 2005, 17(1): 145-156 CrossRef
  14. Burkhead J.L., Gogolin Reynolds K.A., Abdel-Ghany S.E., Cohu C.M., Pilon M. Copper homeostasis. New Phytologist, 2009, 182(4): 799-816 CrossRef
  15. Printz B., Lutts S., Hausman J.-F., Sergeant K. Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science, 2016, 7: 601 CrossRef
  16. Makarova V.G., Laksaeva E.A., Martynov E.G. Rossiiskii mediko-biologicheskii vestnik imeni akademika I.P. Pavlova, 2006, 3: 29-35 (in Russ.).
  17. Krasnov E.A., Savel'eva E.E., Ryzhakova N.K., Reshetov Ya.E., Gataullina A.R. Khimiya rastitel'nogo syr'ya, 2017, 4: 145-151 CrossRef (in Russ.).
  18. Nonvitamin and nonmineral nutritional supplements. S.M. Nabavi, A.S. Silva (eds.). Academic Press, 2019 CrossRef
  19. Sharifi-Rad M., Mnayer D., Morais-Braga M.F.B., Carneiro J.N.P., Bezerra C.F., Coutinho H.D.M., Salehi B., Martorell M., del Mar Contreras M., Soltani-Nejad A., Uribe Y.A.H., Yousaf Z., Iriti M., Sharifi-Rad J. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytotherapy Research, 2018, 32(9): 1653-1663 CrossRef
  20. Kumar R.M., Ramaiah S. Pharmacological importance of Echinacea purpurea. International Journal of Pharma and Bio Sciences, 2011, 2(4): 304-314.
  21. Shekarchi M., Hajimedipoor H., Khanavi M., Rustaie A. The effects of plant age and harvesting time on chicoric and caftaric acids content of E. purpurea (L.) Moench. Iranian Journal of Pharmaceutical Sciences, 2012, 8(3): 203-208.
  22. Khasina E.I. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2014, 16(5-2): 1030-1032 (in Russ.).
  23. Babaeva E.Yu. Osobennosti mineral'nogo pitaniya ekhinatsei purpurnoi v usloviyakh Nechernozemnoi zony RF. Avtoreferat kandidatskoi dissertatsii [Features of the Echinacea purpurea mineral nutrition in the Non-chernozem zone of the Russian Federation. PhD Thesis]. Moscow, 2000 (in Russ.).
  24. Hajagha R., Kirici S., Tabrizi L., Asgharzadeh A., Hamidi A. Evaluation of growth and yield of purple coneflower (Echinacea purpurea l.) in response to biological and chemical fertilizers. Journal of Agricultural Science, 2017, 9(3): 160-171 CrossRef
  25. Agrokhimicheskie metody issledovaniya pochv /Pod redaktsiei A.V. Sokolova [Agrochemical methods in soil research. A.V. Sokolov (ed.)]. Moscow, 1975 (in Russ.).
  26. GOST 24027.2-80 Syr'e lekarstvennoe rastitel'noe. Metody opredeleniya vlazhnosti, soderzhaniya zoly, ekstraktivnykh i dubil'nykh veshchestv, efirnogo masla [GOST 24027.2-80 Raw medicinal vegetable. Methods for determination of moisture, ash content, extractive compounds and tannins, essential oils]. Moscow, 1999 (in Russ.).
  27. GOST 13496.17-95 Korma. Metody opredeleniya karotina [GOST 13496.17-95 Feed. Methods for determining carotene]. Moscow, 2011 (in Russ.).
  28. Mineev V.G., Sychev V.G., Amel'yanchik O.A., Bolysheva T.N., Gomonova N.F., Durynina E.P., Egorov V.S., Edemskaya N.L., Karpova E.A., Prizhukova V.G. Praktikum po agrokhimii /Pod redaktsiei V.G. Mineeva [Workshop on agrochemistry. V.G. Mineev (ed.)]. Moscow, 2001 (in Russ.).
  29. GOST 30178-96 Syr'e i produkty pishchevye. Atomno-absorbtsionnyi metod opredeleniya toksichnykh elementov [GOST 30178-96 Raw materials and food products. Atomic absorption method for determination of toxic elements]. Moscow, 1997 (in Russ.).
  30. Collins J.F., Klevay L.M. Copper. Advances in Nutrition, 2011, 2(6): 520-522 CrossRef
  31. Kaiser C., Wernery U., Kinne J., Marker L., Liesegang A. The role of copper and vitamin A deficiencies leading to neurological signs in captive cheetahs (Acinonyx jubatus) and lions (Panthera leo) in the United Arab Emirates. Food and Nutrition Sciences, 2014, 5(20): 1978-1990 CrossRef
  32. Hassanpour S., Maheri-Sis N., Eshratkhah B., Mehmandar F.B. Plants and secondary metabolites (Tannins): a review. International Journal of Forest, Soil and Erosion, 2011, 1(1): 47-53.
  33. Zaprometov M.N. Osnovy biokhimii fenol'nykh soedinenii [Fundamentals of biochemistry of phenolic compounds]. Moscow, 1974 (in Russ.).
  34. Andrade R.G. Jr., Dalvi L.T., Silva J.M. Jr., Lopes G.K., Alonso A., Hermes-Lima M. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archives of Biochemistry and Biophysics, 2005, 437(1): 1-9 CrossRef
  35. Khathutshelo M.V., Mpumelelo N., Wonder N., Fhatuwani M.N. Effects of foliar spray application of selected micronutrients on the quality of bush tea. Horticultural Science, 2016, 51(7): 873-879 CrossRef
  36. Santos R.M., Fortes G.A.C., Ferri P.H., Santos S.C. Influence of foliar nutrients on phenol levels in leaves of Eugenia uniflora. Revista Brasileira de Farmacognosia, 2011, 21(4): 581-586 CrossRef
  37. Araya M.M., Pizarro F., Olivares M., Arredondo M., González M., Méndez M. Understanding copper homeostasis in humans and copper effects on health. Biological Research, 2006, 39(1): 183-187 CrossRef
  38. Napoli J.L. Vitamin A. Biochemistry and physiological role. In: Encyclopedia of human nutrition (second edition). Elsevier, Berkeley, CA, 2005: 339-347 CrossRef
  39. Mistríková I., Vaverková S. Echinacea — chemical composition, immunostimulatory activities and uses. Thaiszia - Journal of Botany, 2006, 16: 11-26.
  40. Zagumennikov V.B., Molchanova A.V., Babaeva E.Yu., Petrova A.L. Accumulation of ascorbic acid in fresh Echinacea purpurea plants and their processing products. Pharmaceutical Chemistry Journal, 2015, 48(10): 671-674 CrossRef
  41. Osredkar J., Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology, 2011, 3: 1-18 CrossRef
  42. Wang Y., Ou Y.L., Liu Y.Q., Xie Q., Liu Q.F., Wu Q., Fan T.Q., Yan L.L., Wang J.Y. Correlations of trace element levels in the diet, blood, urine, and feces in the chinese male. Biological Trace Element Research, 2012, 145(2): 127-135 CrossRef
  43. Kumar R., Mehrotra N.K., Nautiyal B.D., Kumar P., Singh P.K. Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). Journal of Environmental Biology, 2009, 30(4): 485-488.
  44. Kaewchangwat N., Dueansawang S., Tumcharern G., Suttisintong K. Synthesis of copper-chelates derived from amino acids and evaluation of their efficacy as copper source and growth stimulator for Lactuca sativa in nutrient solution culture. Journal of Agricultural and Food Chemistry, 2017, 65(45): 9828-9837 CrossRef
  45. Stepien A., Wojtkowiak K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chilean Journal of Agricultural Research, 2016, 76(2): 220-227 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)