PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.421eng

UDC: 632.937:579.64

 

MICROBIOLOGICAL CONTROL IN PHYTOSANITARY OPTIMIZATION TECHNOLOGIES FOR AGROECOSYSTEMS: RESEARCH AND PRACTICE (review)

V.A. Pavlyusin, I.I. Novikova, I.V. Boikova

All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail info@vizr.spb.ru, vapavlyushin@vizr.spb.ru, irina_novikova@inbox.ru (✉ corresponding author), irina_boikova@mail.ru

ORCID:
Pavlyushin V.A. orcid.org/0000-0002-4727-8750
Boykova I.V. orcid.org/0000-0001-6268-7301
Novikova I.I. orcid.org/0000-0003-2816-2151

Received October 1, 2019

 

Phytosanitary optimization of agroecosystems targeted to control harmful arthropods and plant pathogens should use a complex of multifunctional biologics based on microbial antagonists of pathogens, producers of bioactive substances and entomopathogens (V.D. Nadykta et al., 2010; Rohini et al.; 2016, M. Ghorbanpour et al., 2017). The most promising microbial strains for plant protection are those possessing not only a direct target effect but also the ability to increase plant disease resistance due to phytoregulatory activity (I.I. Novikova, 2016). The holistic concept of microbiological protection involves the development and use of biological products based on living cultures of entomopathogenic microorganisms and antagonistic microbes with preventive and prolonged action, as well as formulations based on metabolite complexes to quickly reduce the density of phytopathogen populations (I.I. Novikova et al., 2016). Creating multifunctional biological products for plant protection is based on technological strains with high biological activity that are safe for humans and warm-blooded animals. It has been shown that the role of entomopathogenic viruses, microsporidia, bacteria and fungi in the dynamics of the number of phytophagous insects is determined by the type of pathogenesis (obligate or facultative). In case of intracellular obligate parasitism of baculoviruses and microsporidia, mass epizootics were observed in unpaired silkworms (Lymantria dispar Linnaeus), leafworms (family Tortricidae Latreille), cabbage whitewash (Pieris brassicae Linnaeus), meadow and corn moths (Loxostege sticticalis Linnaeus, Ostrinia nubilalis Hübner), ginger pine (Neodiprion sertifer Geoffroy) and black bread (Cephus pygmeus Linnaeus) sawflies, Siberian silkworm (Dendrolimus sibiricus Tschetverikov), cotton (Helicoverpa armigera Hübner) and gray grain scoops (Apamea anceps Denis & Schiffermüller) (I.V. Issy, 1986; A. Vey et al., 1989; A.N. Frolov et al., 2008; V.A. Pavlyushin et al., 2013). The regulatory role of Entomophthora infection is most pronounced in various species of aphids and some species of locusts (G.R. Lednev et al., 2013). For facultative parasitism which is characteristic of entomopathogenic fungi of genera Beauveria, Metarhizium, Lecanicillium, etc. (E. Quessada-Moraga et al., 2004), as well as bacteria of Bacillus thuringiensis group (N.V. Kandybin, 1989) and genus Xenorhabdus members, the most important factor of virulence is toxigenicity against host insects (M. Faria et al., 2007). Hydrolytic enzymes (chitinases, lipases, proteases), toxins, and antiphagocytic defense are factors of virulence of entomopathogenic fungi. Microbiological protection of plants from diseases is based on the use of highly competitive strains that synthesize complexes of hydrolases and biologically active compounds and efficiently colonize suitable ecological niches (I.V. Maksimov et al., 2015; I.I. Novikova, 2016; I.I. Novikova et al., 2016). A number of active compounds produced by rhizosphere microorganisms possess elicitor activity and trigger induced resistance (J.W. Kloepper et al., 2009; N. Ohkama-Ohtsu et al., 2010). The effectiveness of biologicals developed at the All-Russian Research Institute of Plant Protection against the main harmful diseases of crops reaches 60-90%, which provides a 20-25 % increase in productivity and improves the quality of crop production (I.I. Novikova, 2017). The plant microbiological protection concept relies on the search for promising producers of novel biologicals among wider range of microbial species and strains, on the design of new formulations optimal in specific environmental conditions, and on biological plant protection and integrated plant protection management which combines biological products for various purposes depending on the specific complex of plant pathogens and the local phytosanitary situation in general (N.A. Belyakova et al., 2013).

Keywords: biologicals, bio-effectiveness, entomopathogenic microorganisms, antagonist microbes, harmful arthropods, plant pathogenic fungi, plant pathogenic bacteria, usable pesticide preparation, bioactive complexes, elicitors.

 

REFERENCES

  1. Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 2018, 117: 147-157 CrossRef
  2. Nadykta V.D., Volkova G.V., Dolzhenko V.I. Zashchita i karantin rastenii, 2010, 11: 9-11 (in Russ.).
  3. Rohini, Gowtham H.G., Hariprasad P., Singh S.B., Niranjana S.R. Biological control of Phomopsis leaf blight of brinjal (Solanum melongena L.) with combining phylloplane and rhizosphere colonizing beneficial bacteria. Biological Control, 2016, 101: 123-129 CrossRef
  4. Pavlyushin V.A., Fasulati S.R., Vilkova N.A., Sukhoruchenko G.I., Nefedova L.I. Antropogennaya transformatsiya agroekosistem i ee fitosanitarnye posledstviya [Anthropogenic transformation of agroecosystems and its phytosanitary consequences]. St. Petersburg, 2008 (in Russ.).
  5. Pavlyushin V.A., Vilkova N.A., Sukhoruchenko G.I., Nefedova L.I.Vestnik zashchity rastenii, 2016, 2(88): 5-15 (in Russ.).
  6. Zvyagintsev D.G. Pochva i mikroorganizmy [Soil and microorganisms]. Moscow, 1987 (in Russ.).
  7. Polyanskii A.M., Golovchenko A.V., Polyanskaya L.M., Zvyagintsev D.G. Mikrobiologiya, 2002, 71(5): 675-680 (in Russ.).
  8. Pavlyushin V.A., Yakutkin V.I., Tavolzhanskii V.N. Vestnik zashchity rastenii, 2016, 1(87): 14-22 (in Russ.).
  9. Pavlyushin V.A., Ivashchenko V.G. Vestnik zashchity rastenii, 2017, 3(93): 5-16 (in Russ.).
  10. Borisov B.A., Serebrov V.V., Novikova I.I., Boikova I.V. V sbornike: Patogeny nasekomykh: strukturnye i funktsional'nye aspekty [In: Insect pathogens: structural and functional aspects]. Moscow, 2001: 352-427 (in Russ.).
  11. Lednev G.R., Dolgikh V.V., Pavlyushin V.A. Vestnik zashchity rastenii, 2013, 3: 3-17 (in Russ.).
  12. Issi I.V. V knige: Mikrosporidii. Seriya: Protozoologiya [Microsporidia. Series: Protozoology]. Leningrad, 1986, vol. 10: 6-135 (in Russ.).
  13. Frolov A.N., Malysh Yu.M., Tokarev Yu.S. Entomologicheskoe obozrenie, 2008, 87(2): 291-302 (in Russ.).
  14. Pavlyushin V.A., Issi I.V., Tokarev Yu.S. Vestnik zashchity rastenii, 2013, 2: 3-12 (in Russ.).
  15. Vey A., Riba G. Toxines insecticides issues de champignons entomopathogenes. Etat actuel des conaissances dutilsation de leurs activites. C. K. Acad. Agr., 1989, 75(6): 143-149.
  16. Quessada-Moraga E., Vey A. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenis fungus Beauveria bassiana. Mycol. Res., 2004, 108: 441-452 CrossRef
  17. Kandybin N.V. Bakterial'nye sredstva bor'by s gryzunami i vrednymi nasekomymi: teoriya i praktika [Bacterial control of rodents and harmful insects: theory and practice]. Moscow, 1989 (in Russ.).
  18. Augustyniak J., Dabert M., Wypijewski K. Transgenes in plants: protection against viruses and insects. Acta Physiologiae Plantarum, 1997, 19(4): 561-569 CrossRef
  19. Faria M., Wraight S.P. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 2007: 43(3): 237-256 CrossRef
  20. Mitina G.V., Kozlova E.G., Pazyuk I.M. Vestnik zashchity rastenii, 2018, 2(96): 25-32 (in Russ.).
  21. Sharma M., Dangi P., Choudhary M. Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 2014, 3(2): 801-832.
  22. Aggarwal N., Thind S.K., Sharma S. Role of secondary metabolites of Actinomycetes in crop protection. In: Plant growth promoting actinobacteria: A new avenue for enhancing the productivity and soil fertility of grain legumes. G. Subramaniam, S. Arumugam, V. Rajendran (eds.). Springer, Singapore, 2016: 99-121 CrossRef
  23. Méndes W.A., Valle J., Ibarra J.E., Cisneros J., Penagos D.I., Williams T. Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control, 2002, 25(2): 195-206 CrossRef
  24. Kirst H.A. The spinosyn family of insecticides: realizing the potential of natural products research J. Antibiot. (Tokio), 2010, 63(3): 101-11 CrossRef
  25. Baker G.H., Dorgan R.J., Everett J.R., Hood J., Poulton M.E. A novel series of milbemicin antibiotics from Streptomyces strain E225. II. Isolation, characterisation, structure elucidation. J. Antibiot. (Tokyo), 1990, 43(9): 1069-1076 CrossRef
  26. Dzhafarov M.Kh., Vasilevich F.I., Mirzaev M.N. Production of avermectins: biotechnologies and organic synthesis (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(2): 199-215 CrossRef
  27. Boikova I.V. Biologicheskie osobennosti streptomitsetov — osnovy novykh insektitsidnykh biopreparatov. Avtoreferat kandidatskoi dissertatsii [Biological features of streptomycetes — the basis of new insecticidal biological products. PhD Thesis]. St. Petersburg, 1998 (in Russ.).
  28. Boikova I.V., Pavlyushin V.A. Informatsionnyi byulleten' VPRS MOBB, 2002, 33: 102-113 (in Russ.).
  29. Boikova I.V., Kozlova E.G., Anisimova O.S., Kononenko A.V. Zashchita i karantin rastenii, 2007, 9: 40-41 (in Russ.).
  30. Tikhonovich I.A., Provorov N.A. Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agroekosistem budushchego [Plant-microbe symbioses: molecular genetics of future agroecosystems]. St. Petersburg, 2009 (in Russ.).
  31. Doornbos R.F., van Loon L.C., Bakker P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. a review. Agronomy for Sustainable Development, 2012, 32(1): 227-243 CrossRef
  32. Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., van Wees S.C.M., Bakker P.A.H.M. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 2014, 52: 347-375 CrossRef
  33. Compant S., Duffy B., Nowak J., Clément C., Barka E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 2005, 71(9): 4951-4959 CrossRef
  34. Beneduzi A., Ambrosini A., Passaglia L.M.P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol., 2012, 35(4, suppl. 1): 1044-1051 CrossRef
  35. Kumar P., Dubey R.C., Maheshwari D.K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167(8): 493-499 CrossRef
  36. Ye Y.F., Li Q.Q., Fu G., Yuan G.Q., Miao J.H, Lin W. Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J. Integr. Agric., 2012, 11(1): 90-99 CrossRef
  37. Dunlap C.A, Schisler D.A, Bowman M.J, Rooney A.P. Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus lavescens for control of Fusarium head blight. Plant Gene, 2015, 2: 1-9 CrossRef
  38. Novikova I.I. Vestnik zashchity rastenii, 2016, 89(3): 120-122 (in Russ.).
  39. Novikova I.I., Popova E.V., Boikova I.V., Pavlyushin V.A., Tyuterev S.L. Zashchita i karantin rastenii, 2016, 8: 35-43 (in Russ.).
  40. Yang L., Quan X., Xue B., Goodwin P.H., Lu S., Wang J., Wei D., Wu C. Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biological Control, 2015, 85: 52-58 CrossRef
  41. Maksimov I.V., Veselova S.V., Nuzhnaya T.V., Sarvarova E.R., Khairullin R.M. Fiziologiya rastenii, 2015, 62(6): 763-775 CrossRef (in Russ.).
  42. Tan S.Y., Jiang Y., Song S., Huang J.F., Ling N., Xu Y.C., Shen Q.R. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Protection, 2013, 43: 134-140 CrossRef
  43. Duffy B., Schouten A., Raaijmakers J.M. Pathogen self-defense: mechanisms to counteract microbial antagonism. Annual Review of Phytopathology, 2003, 41: 501-538 CrossRef
  44. Arinbasarova A.Yu., Baskunov B.P., Medentsev A.G. Mikrobiologiya, 2017, 86(2): 258-260 CrossRef (in Russ.).
  45. Benítez T., Rincón A.M., Limón M.C., Codón A.C. Biocontrol mechanisms of Trichoderma strains. International Microbiology,2004, 7(4): 249-260.
  46. Sivasakthi S., Kanchana D., Usharani G., Saranraj P. Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. International Journal of Microbiological Research, 2013, 4(3): 227-233 CrossRef
  47. Bakker P.A.H.M., Pieterse C.M.J., van Loon L.C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 2007, 97(2): 239-243 CrossRef
  48. Van Loon L.C. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 2007, 119: 243-254 CrossRef
  49. Porcel R., Zamarreño Á.M., García-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 2014, 14: 36 CrossRef
  50. Kilian M., Steiner U., Krebs B., Junge H., Schmiedeknecht G., Hain R. FZB24® Bacillus subtilis — mode of action of microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 2000, 1/00(1): 72-93.
  51. Dobbelaere S., Vanderleyden J., Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 2003, 22(2): 107-149 CrossRef
  52. Arkhipova T.N., Prinsen E., Veselov S.U., Martynenko E.V., Melentiev A.I., Kudoyarova G.R. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 2007, 292(1): 305-315 CrossRef
  53. Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistry, 2014, 74: 84-91 CrossRef
  54. Cohen A.C., Travaglia C.N., Bottini R., Piccoli P.N. Paticipation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 2009, 87(5): 455-462 CrossRef
  55. Kumar P., Dubey R.C., Maheshwari D.K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167(8): 493-499 CrossRef
  56. de Werra P., Péchy-Tarr M., Keel C., Maurhofer M. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology, 2009, 75: 4162-4174 CrossRef
  57. Final Screening Assessment of Bacillus megaterium strain ATCC 14581. Environment and Climate Change Canada. Health Canada, February, 2018.
  58. Kurdish I.K., Chuiko N.V., Bega Z.T. Prikladnaya biokhimiya i mikrobiologiya, 2010, 4(1): 58-63 (in Russ.).
  59. Junior I.T., Schafer J.T., Corrêa B.O., Funck G.D., Moura A.B. Expansion of the biocontrol spectrum of foliar diseases in rice with combinations of rhizobacteria. Revista Ciência Agronômica, 2017, 48(3): 513-522 CrossRef
  60. Ohkama-Ohtsu N., Wasaki J. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant and Cell Physiology, 2010, 51(8): 1255-1264 CrossRef
  61. Kloepper J.W., Gutierrez-Estrada A., McInroy J.A.Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 2009, 53(2): 159-167 CrossRef
  62. Verhagen B.W.M., Trotel-Aziz P., Couderchet M., Höfte M., Aziz A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defense responses in grapevine. Journal of Experimental Botany, 2010, 61(1): 249-260 CrossRef
  63. Ongena M., Henry G., ThonartP. The role of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In:Recent developments in management of plant diseases (Plant pathology in the 21st century), vol. 1. U. Gisi, I. Chet, M.L. Guillino (eds.). Springer, Dordrecht, 2010: 59-69 CrossRef
  64. Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Research International, 2015, 2015: Article ID 473050 CrossRef
  65. Falardeau J., Wise C., Novitsky L., Avis T.J.Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 2013, 39: 869-878 CrossRef
  66. Cawoy H., Mariutto M., Henry G., Fisher C., Vasilyeva N., Thonart P., Dommes J., Ongena M.Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions, 2014, 27(2): 87-100 CrossRef
  67. Henry G., Deleu M., Jourdan E., Thonart P., Ongena M.The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related responses. Cellular Microbiology, 2011, 13(11): 1824-1837 CrossRef
  68. Patel H., Tscheka C., Edwards K., Karlsson G., Heerkotz H. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2011, 1808(8): 2000-2008 CrossRef
  69. Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., Arpigny J.‐L., Thonart P.Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology,2007,9(4): 1084-1090 CrossRef
  70. De Vleesschauwer D., Höfte M. Rhizobacteria-induced systemic resistance. Advances in Botanical Research, 2009, 51: 223-281 CrossRef
  71. Chetverikov S.P., Suleimanova L.R., Loginov O.N. Prikladnaya biokhimiya i mikrobiologiya, 2009, 45(5): 565-570 (in Russ.).
  72. Luo S., Xu T., Chen L., Chen J., Rao C., Xiao X., Wan Y., Zeng G., Long F., Liu C., Liu Y. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology, 2012, 93(4):1745-1753 CrossRef
  73. Bakker P.A.H.M., Pieterse C.M.J., van Loon L.C.Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 2007, 97(2): 239-243 CrossRef
  74. De Vleesschauwer D., Djavaheri M., Bakker P.A.H.M., Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiology, 2008, 148(4): 1996-2012 CrossRef
  75. Nikoo F.S., Sahebani N, Aminian H. Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 2014, 54(4): 383-398CrossRef
  76. Lachin Mokhtarnejad, Reza Ghaderi, De Vleesschauwer D., Djavaheri M., Bakker P.A.H.M., Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiology, 2008, 148(4): 1996-2012 CrossRef
  77. Pavlyushin V.A., Vilkova N.A., Sukhoruchenko G.I., Nefedova L.I. Materialy 9-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Biologicheskaya zashchita rastenii — osnova stabilizatsii agroekosistem» [Proc. 9 Int. Conf. «Biological plant protection — the basis for sustainable agroecosystems»]. Krasnodar, 2016: 504-508 (in Russ.).
  78. Novikova I.I. V sbornike: Biologicheskie sredstva zashchity rastenii, tekhnologii ikh izgotovleniya i primeneniya [In: Biological plant protection products, technologies for their manufacture and use]. St. Petersburg—Pushkin,2005: 303-332 (in Russ.).
  79. Golovlev E.L. Mikrobiologiya, 2001, 70(4): 437-443 (in Russ.)
  80. Golovlev E.L. Mikrobiologiya,1998, 67(2): 149-155 (in Russ.)
  81. Biologiya otdel'nykh grupp aktinomitsetov /Pod redaktsiei N.A. Krasil'nikova [Biology of individual groups of actinomycetes. N.A. Krasil'nikov (ed.)]. Moscow, 1965 (in Russ.)
  82. Zenova G.M., Zvyagintsev D.G., Manucharova N.A., Stepanova O.A., Chernov I.Yu. Pochvovedenie, 2016, 10: 1214-1217 CrossRef (in Russ.).
  83. Zenova G.M., Dubrova N.S., Gracheva T.A., Kuznetsova A.I., Stepanova O.A., Chernov I.Yu., Manucharova A.S. Vestnik Moskovskogo universiteta, 2016, 17(4): 43-46 (in Russ.)
  84. Shenin Yu.D., Novikova I.I., Kruglikova L.F., Kal'ko G.V. Antibiotiki i khimioterapiya, 1995, 40(5): 3-7 (in Russ.). 
  85. Novikova I.I., Shenin Y.D. Isolation, identification, and antifungal activity of a Gamair complex formed by Bacillus subtilis M-22, a producer of a biopreparation for plant protection from mycoses and bacterioses. Applied Biochemistry and Microbiology, 2011, 47(9): 817-826 CrossRef
  86. Shenin Yu.D., Novikova I.I., Kaminskii G.V., Ivanova I.A. Antibiotiki i khimioterapiya, 2001, 46(2): 10-16 (in Russ.).
  87. Novikova I.I., Shenin Yu.D., Tsyplenkov A.E., Fominykh T.S., Suika P.V., Boikova I.V. Vestnik zashchity rastenii, 2009, 2: 3-19 (in Russ.).
  88. Shenin Yu.D., Novikova I.I., Suika P.V. Biotekhnologiya, 2010, 2: 41-53 (in Russ.).
  89. Novikova I.I. Zashchita i karantin rastenii, 2017, 4: 3-6 (in Russ.).
  90. Osnovnye itogi raboty Rossiiskoi akademii sel'skokhozyaistvennykh nauk za 2013 god [The main results of the work of the Russian Academy of Agricultural Sciences, 2013]. Moscow, 2014 (in Russ.).
  91. Otchet otdeleniya sel'skokhozyaistvennykh nauk RAN o vypolnenii fundamental'nykh i poiskovykh nauchnykh issledovanii v 2014 godu [Report of the Department of Agricultural Sciences RAS on fundamental and exploratory research, 2014]. Moscow, 2015 (in Russ.).
  92. Otchet otdeleniya sel'skokhozyaistvennykh nauk RAN o vypolnenii fundamental'nykh i poiskovykh nauchnykh issledovanii v 2014-2016 gg [Report of the Department of Agricultural Sciences RAS on fundamental and exploratory research, 2014-2016]. Moscow, 2017 (in Russ.).
  93. Shternshis M.V. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2012, 2(18): 92-100 (in Russ.).
  94. Belyakova N.A., Pavlyushin V.A. Mat. 3-go Vserossiiskogo s"ezda po zashchite rastenii [Proc. 3rd All-Russian Congress on Plant Protection]. St. Petersburg, 2013, t. 2: 7-10 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)