PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.3.499eng

UDC: 635.21:575.174.015.3

Acknowledgements:
Supported financially by Russian Foundation for Basic Research (grant No. 18-29-07007) and the Federal Research Program for 2017-2025, Sub-Program «Potato breeding and seed production»). Plants were grown in an experimental artificial climate chamber EACC (Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS).

GENOME VARIABILITY OF RUSSIAN POTATO CULTIVARS: AFLP-ANALYSIS DATA

E.A. Dyachenko, A.V. Kulakova, A.V. Shchennikova, E.Z. Kochieva

Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, 33/2, Leninskii prospect, Moscow, 119071 Russia, e-mail dyachenko-el@yandex.ru (✉ corresponding author), kulakova_97@mail.ru, shchennikova@yandex.ru, ekochieva@yandex.ru

ORCID:
Dyachenko E.A. orcid.org/0000-0002-0570-9751
Shchennikova A.V. orcid.org/0000-0003-4692-3727
Kulakova A.V. orcid.org/0000-0002-3124-525X
Kochieva E.Z. orcid.org/0000-0002-6091-0765

Received February 28, 2020

 

Plant breeding success largely depends on knowledge of the genetic diversity and pedigree of cultivars, which is important for determining parental pairs for crossbreeding, donor genotypes of valuable traits and intraspecific homogeneity. AFLP is one of the popular methods for detecting genomic polymorphism and genotyping plant accessions, cultivars and lines. In addition to solving taxonomic and phylogenetic problems, the AFLP method is widely used to determine the variability, homogeneity, and the introgression and hybridity degree of S. tuberosum cultivars, reconstruct their pedigrees, and also to search for markers linked to various traits. Despite the importance of cultivar certification and inter-cultivar genomic variability assessment, in the Russian Federation, there are few studies on molecular marking of the potato domestic and foreign cultivars farmed in Russia. In the present work, the nuclear genome variability of 60 potato cultivars and five perspective clones was evaluated using the multilocus AFLP analysis. With primer combinations E35/M40 and E41/M35, 218 AFLP fragments were detected, 189 (86.7 %) of which were polymorphic and 19 were unique for individual cultivars. Each of the 65 analyzed accessions was characterized by a specific AFLP spectrum. The genetic distances between the analyzed accessions varied widely from 0.37 to 0.77 with an average value of GD = 0.61. The species Solanum stoloniferum, used as an outgroup genotype, was most similar to the cv. Fioletovyi (GD = 0.59), and the greatest difference was to the cv. Aurora (GD = 0.80). Statistical analysis of the obtained AFLP data resulted in statistically insignificant clustering. On dendrograms constructed using the PAST and Structure v. 2.3.4 software, there was a tendency toward clustering (with low bootstrap support) of cultivars from the Lorch Potato Research Institute, and accessions with resistance to late blight, cyst nematode or PVY, as well as with yellow-coloured tuber peel. The high polymorphism level of the analyzed cultivars, the lack of their clear clustering and their “unstable” position at the dendrograms may be due to the current intensive exchange of breeding material, as well as to the increasing popularity of using wild potatoes in the potato breeding programs.

Keywords: Solanum tuberosum, potato, Russian cultivars, foreign cultivars, genomic polymorphism, tuber skin colour, tuber flesh colour, resistance, potato blight, cyst nematode, PVY, AFLP-clustering.

 

REFERENCES

  1. Russell J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W., Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 1997, 95: 714-722 CrossRef
  2. Semagn K., Bjørnstad Å., Ndjiondjop M.N. An overview of molecular marker methods for plants. African Journal of Biotechnology, 2006, 5(25): 2540-2568.
  3. Khlestkina E.K. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(4/2): 1044-1053 (in Russ.).
  4. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Friters A., Pot J., Paleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23(21): 4407-4414 CrossRef
  5. Kardolus J.P., van Eck H.J., van den Berg R.G. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Systematics and Evolution, 1998, 210(1-2): 87-103 CrossRef
  6. Hassan F.S.C., Solouki M., Fakheri B.A., Nezhad N.M., Masoudi B. Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 2018, 24(6): 1231-1243 CrossRef
  7. El-Esawi M.A., Alaraidh I.A., Alsahli A.A., Ali H.M., Alayafi A.A., Witczak J., Ahmad M. Genetic variation and alleviation of salinity stress in barley (Hordeum vulgare L.). Molecules, 2018, 23(10): 2488 CrossRef
  8. D'yachenko E.A., Ryzhova N.N., Vishnyakova M.A., Kochieva E.Z. Molekulyarno-geneticheskoe raznoobrazie gorokha (Pisum sativum L.) iz kollektsii VIR na osnove dannykh AFLP-analiza. Genetika, 2014, 50(9): 1040-1049 CrossRef
  9. El-Esawi M.A., Al-Ghamdi A.A., Ali H.M., Alayafi A.A., Witczak J., Ahmad M. Analysis of genetic variation and enhancement of salt tolerance in French pea (Pisum sativum L.). International Journal of Molecular Sciences, 2018, 19(8): 2433 CrossRef
  10. Kochieva E.Z., Ryzhova N.N. Genetika, 2003, 39(12): 1589-1593 (in Russ.).
  11. Kochieva E.3., Ryzhova N.N. Doklady Akademii nauk, 2009, 425(2): 256-258 (in Russ.).
  12. Bamberg J.B., del Rio A.H. Selection and validation of an AFLP marker core collection for the wild potato Solanum microdontum. American Journal of Potato Research, 2014, 91(4): 368-375 CrossRef
  13. McGregor C.E., van Treuren R., Hoekstra R., van Hintum T.J. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theoretical and Applied Genetics, 2002, 104(1): 146-156 CrossRef
  14. Bryan G.J., McLean K., Waugh R., Spooner D.M. Levels of Intra-specific AFLP diversity in tuber-bearing potato species with different breeding systems and ploidy levels. Frontiers in Genetics, 2017, 8: 119 CrossRef
  15. Hawkes J.G. The potato: evolution, biodiversity and genetic resources. American Potato Journal, 1990, 67(10): 733-735 CrossRef
  16. Jacobs M.M., van den Berg R.G., Vleeshouwers V.G., Visser M., Mank R., Sengers M., Hoekstra R., Vosman B. AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evolutionary Biology, 2008, 8: 145 CrossRef
  17. Manoko M.L.K., van den Berg R.G., Feron R.M.C., van der Weerden G.M., Mariani C. AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu stricto (Solanaceae). Plant Systematics and Evolution, 2007, 267(1-4): 1-11 CrossRef
  18. Solis J.S., Ulloa D.M., Rodríguez L.A. Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. tuberosum L.) using morphological data and AFLP markers. Electronic Journal of Biotechnology, 2007, 10(3): 436-443 CrossRef
  19. Vetelainen M., Gammelgard E., Valkonen J.P.T. Diversity of Nordic landrace potatoes (Solanum tuberosum L.) revealed by AFLPs and morphological characters. Genetic Resources and Crop Evolution, 2005, 52(8): 999-1010 CrossRef
  20. Cicatelli A., Baldantoni D., Iovieno P., Carotenuto M., Alfani A., De Feis I., Castiglione S. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties. Science of the Total Environment, 2014, 493: 1025-1035 CrossRef
  21. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D., Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 2013, 60(7): 1997-2015 CrossRef
  22. Antonova O.Yu., Shvachko N.A., Novikova L.Yu., Shuvalov O.Yu., Kostina L.I., Klimenko N.S., Shuvalova A.R., Gavrilenko T.A. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(5): 596-606 CrossRef (in Russ.).
  23. Kolobova O.S., Malyuchenko O.P., Shalaeva T.V., Shanina E.P., Shilov I.A., Alekseev Ya.I., Velishaeva N.S. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 124-127 CrossRef (in Russ.).
  24. Gavrilenko T.A., Klimenko N.S., Antonova O.Yu., Lebedeva V.A., Evdokimova Z.Z., Gadzhiev N.M., Apalikova O.V., Alpat'eva N.V., Kostina L.I., Zoteeva N.M., Mamadbokirova F.T., Egorova K.V. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(1): 35-45 CrossRef (in Russ.).
  25. Klimenko N.S., Antonova O.Yu., Kostina L.I., Mamadbokirova F.T., Gavrilenko T.A. Trudy po prikladnoi botanike, genetike i selektsii, 2017, 178(4): 66-75 CrossRef (in Russ.).
  26. Klimenko N.S., Antonova O.Yu., Zheltova V.V., Fomina N.A., Kostina L.I., Mamadbokirova F.T., Gavrilenko T.A. Screening OF Russian POTATO CULTIVARS (Solanum tuberosum L.) with DNA markers linked to the genes conferring extreme resistance to potato virus Y. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(5): 958-969 CrossRef
  27. Biryukova V.A., Shmyglya I.V., Zharova V.A., Beketova M.P., Rogozina E.V., Mityushkin A.V., Meleshin A.A. Rossiiskaya sel'skokhozyaistvennaya nauka, 2019, 5: 17-22 CrossRef (in Russ.).
  28. Biryukova V.A., Shmyglya I.V., Abrosimova S.B., Zapekina T.I., Meleshin A.A., Mityushkin A.V., Manankov V.V. Zashchita kartofelya, 2015, 1: 3-7 (in Russ.).
  29. Puchooa D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). African Journal of Biotechnology, 2004, 3(4): 253-255.
  30. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, 4(1): 1-9.
  31. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.
  32. Hubisz M.J., Falush D., Stephens M., Pritchard J.K. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 2009, 9(5): 1322-1332 CrossRef
  33. Esfahani S.T., Shiran B., Balali G. AFLP markers for the assessment of genetic diversity in European and North American potato varieties cultivated in Iran. Crop Breeding and Applied Biotechnology, 2009, 9(1): 75-86 CrossRef
  34. Machida-Hirano R. Diversity of potato genetic resources. Breed Science, 2015, 65(1): 26-40 CrossRef

 

back