doi: 10.15389/agrobiology.2018.3.587eng

UDC 633.11:575.174.015.3

Acknowledgements:
Supported financially by Russian Science Foundation (project No. 16-16-10005)

 

ROOT HABITUS AND PLANT PRODUCTIVITY OF SPRING BREAD
WHEAT SYNTHETIC LINES IN WESTERN SIBERIA, AS CONNECTED
WITH BREEDING FOR DROUGHT TOLERANCE

V.P. Shamanin1, I.V. Pototskaya1, S.S. Shepelev1, V.E. Pozherukova1, A.I. Morgîunov2

1Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail: vp.shamanin@omgau.org (✉ corresponding author), iv.pototskaya@omgau.org,
sergeyschepelew@mail.ru, ve.pozherukova@omgau.org;
2InternationalMaize and Wheat Improvement Center (CIMMYT),P.K. 39 Emek, 06511, Ankara, Turkey, e-mail a.morgounov@CGIAR.ORG

ORCID:
Shamanin V.P. orcid.org/0000-0003-4767-9957
Pozherukova V.E. orcid.org/0000-0001-8429-2167
Pototskaya I.V. orcid.org/0000-0003-3574-2875
Morgîunov A.I. orcid.org/0000-0001-7082-5655
Shepelev S.S. orcid.org/0000-0002-4282-8725

Received January 29, 2018

 

In Western Siberia, drought appears during the initial period of plant vegetation, and dryness in June and early July is increasing, as evidenced by the hydrothermal coefficients. Improvement of drought tolerance of wheat varieties is a breeding priority for ensuring crop stability over the years of warming and increasing frequency of dry years. This paper is the first our report of wide surveyed concerning the assessment of phenotypic differences in the main parameters of the root system between hexaploid synthetic wheat lines and their advantage over standard varieties due to the formation of the powerful root system penetrating into deep layers of the soil. The synthetic lines we studied in 2016-2017 in Western Siberia, were created in CIMMYT by crossing of durum wheat (Triticum durum Desf., genome ÀÂ) varieties Aisberg, Leucurum 84693, Ukr-Od 952.92, Ukr-Od 1530.94 (Odessa, Ukraine) and Ðandur (Romania) with different entries of Aegilopstauschii Coss. (synonym Ae. squarrosa, genome D) from Caspian basin. Also, 15 synthetic wheat lines derived from Kyoto University (Japan) were also involved in studying. In total, we examines 126 lines of spring and winter types. Our screening revealed high variability of genotypes on the main parameters of root habitus in hybrid combinations with involving of different forms of the goat grass. The lines derived from hybrid combinations Aisberg/Ae.sq.(369), Ukr-Od 952.92/Ae.sq.(1031), Ukr-Od 1530.94/Ae.sq.(458) and Ukr-Od 1530.94/Ae.sq.(629) had high parameters of the root system development, i.e. the total root length was 73.9-141.1 cm, the root area was 16.6-25.3 cm2, the number of root tips was 98-235, the root weight was 0.75-0.87 g. The lines with 5-6 germinal roots were mainly derived from the crosses when goat grass entries Ae.sq.(223) and Ae.sq.(310) of Gilan province, Ae.sq.(1031) of Zanjan province (Iran), and also Ae.sq.(409) from Dagestan (Russia) were the progenitors. The correlation coefficients between the main quantitative traits of plant productivity and the root system parameters calculated for the synthetic wheat lines showed that the plant height can be a marker for selecting genotypes with better parameters of root system, and therefore more drought-tolerant in Western Siberia. Synthetic lines No.No. 18, 28, 32, 38 of Àisberg/Ae.sq.(369), No. 37 of Ukr-Od 1530.94/Ae.sq.(310), No. 59 of Ukr-Od 30.94/Ae.sq.(1027), No. 61 of Pandur/Ae.sq.(409), and No. 36 of Aisberg/Ae.sq.(369)//Demir, selected for the elements of the spike productivity and a better root development may be involved in breeding for drought tolerance under conditions of Western Siberia.

Keywords: Triticum durum Desf., Aisberg, Leucurum 84693, Ukr-Od 952.92, Ukr-Od 1530.94, Ðandur, Aegilops tauschii Coss., synthetic wheat, lines, parameters of the root system, drought tolerance.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Likhenko I.E. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2008, 1: 25-30 (in Russ.).
  2. Shamanin V.P., Morgunov A.I., Petukhovskii S.L., Trushchenko A.Yu., Pototskaya I.V., Krasnova Yu.S., Karakoz I.I., Pushkarev D.V. Sovremennye problemy nauki i obrazovaniya, 2014, 1. Accessed http://www.science-education.ru. No date (in Russ.).
  3. Koval' S.F., Shamanin V.P., Koval' V.S. Strategiya i taktika otbora v selektsii rastenii [Strategy and tactics of selection in plant breeding]. Omsk. 2010 (in Russ.).
  4. Shamanin V.P., Trushchenko A.Yu., Pinkal' A.V., Pushkarev V.D., Pototskaya I.V., Morgunov A.I. Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta, 2016, 3(40): 57-64 (in Russ.).
  5. Trethowan R.M., Mujeeb-Kazi A., Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci., 2008, 48(4): 1255-1265 CrossRef
  6. Kalia B., Wilson D.L., Bowden R.L., Singh R.P., Gill B.S. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii. Genet. Resour. Crop Evol., 2017, 64(5): 913-926 CrossRef
  7. Iganaki M., Humeid B., Tawkaz S., Amri A. Some constraints on interspesific crossing of durum wheat with Aegilops tauschii screened under water-deficit stress. Journal of Plant Breeding and Genetics, 2014, 2(1): 7-14.
  8. Manschadi A.M., Christopher J., de Voil P., Hammer G.L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol., 2006, 33: 823-837 CrossRef
  9. Van Ginkel M., Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research, 2007, 104(1-3): 86-94 CrossRef
  10. Morguonov A., Abigalieva A., Akan K., Akin B., Baenziger S., Bhatta M., Dababat A.A., Demir L., Dutbayev Y., Bouhssini M.El., Erginbas-Orakci G., Kishii M., Keser M., Koç E., Kurespek A., Mujeeb-Kazi A., Yorgancilar A., Özdemir F.,  Özturk I., Payne T., Qadimaliyeva G., Shamanin V., Subasi K., Suleymanova G.  High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resources, 2018, 16(3): 273-278 CrossRef
  11. Li J., Wan H.S., Yang W.Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol., 2014, 52: 735-742 CrossRef
  12. Lopes M.S., Reynolds M.P. Patitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct. Plant Biol., 2010, 37: 147-156 CrossRef
  13. Becker S.R., Byrne P.F., Reid S.D., Bauerle W.L., McKay J.K., Haley S.D. Root traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse study. Euphytica, 2016, 207(1): 213-224 CrossRef
  14. Rana R.M., Bilal M., Rehman S.U., Iqbal F., Shah M.K.N. Synthetic wheat: a new hope for the hungry world. Asian J. Agri. Biol., 2013, 1(2): 91-94.
  15. Reynolds M., Dreccer F., Trethowan R. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot., 2007, 58(2): 177-186 10.1093/jxb/erl250).
  16. Sohail Q., Inoue T., Tanaka H., Eltayeb A.E., Matsuoka Y., Tsujimoto H. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breeding Science, 2011, 61(4): 347-357 CrossRef
  17. Pinto R.S., Reynolds M.P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Teor. Appl. Genet., 2015, 128(4): 575-585 CrossRef
  18. Lepekhov S.B. Nekotorye printsipy selektsii yarovoi myagkoi pshenitsy na zasukhoustoichivost' i urozhainost' v Altaiskom krae [Some aspects of spring wheat beeding for drought resistance and productivity in Altai Krai]. Barnaul, 2015 (in Russ.).
  19. Zhukov V.I., Romanovskaya R.N., Kuz'mina A.N., Sokolova I.V. Diagnostika zasukhoustoichivosti yarovoi pshenitsy po chislu zarodyshevykh kornei [Numer of embryonic roots as a criterion of spring wheat resistance to drought]. Novosibirsk, 1987 (in Russ.).
  20. Christopher J., Christopher M., Jennings R., Jones S., Fletcher S., Borrell A., Manschadi A.M.. Jordan D., Mace E., Hammer G. QTL for root angle and number in a population developed from bread wheat (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor. Appl. Genet., 2013, 126(6): 1563-1574 CrossRef
  21. Shirazi M.U., Gyamfi J.A., Ram T., Bachiri H. Selection of some suitable drought tolerant wheat genotypes using carbon isotopes discrimination (CID) technique. Pak. J. Bot., 2010, 42(5): 3639-3644. 
  22. Goncharova E.A., Chesnokov Yu.V., Sitnikov M.N. Trudy Karel'skogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, 3: 10-17 (in Russ.).
  23. Chesnokov Yu.V., Goncharova E.A., Sitnikov M.N., Kocherina N.V., Lovasser U., Berner A. Fiziologiya rastenii, 2014, 61(6): 855-863 (in Russ.).
  24. Krupnov V.A. Drought and wheat breeding: system approach. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 1: 12-24.
  25. Tsygankov V.I. Otsenka zharostoikosti i zasukhoustoichivosti yarovoi pshenitsy na fone selektsionnogo protsessa v znoino-zasushlivykh usloviyakh Zapadnogo Kazakhstana. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2011, 31(1): 18-22.
  26. Shaposhnikov A.I., Morgunov A.I., Akin B., Makarova N.M., Belimov A.A., Tikhono-vich I.A. Comparative characteristics of root systems and root exudation of synthetic, landrace and modern wheat varieties. Selskokhozyaistvennayabiologiya [AgriculturalBiology], 2016, 51(1): 68-78 CrossRef
  27. Dvorak J., Luo M.-C., Yng Z.-L., Zhang H.-B. The structure of the Aegilops tauschii gene-pool and the evolution of hexaploid wheat. Theor. Appl. Genet., 1998, 97(4): 657-670 CrossRef
  28. Dudnikov A.J. Multivariate analysis of genetic variation in Aegilops tauschii from the world germaplasm collection. Genet. Resour. Crop Evol., 2000, 47(2): 185-190 CrossRef
  29. Eldarov M., Aminov N., van Slageren M. Distribution and ecological diversity of Aegilops L. in the Greater and Lesser Caucasus Regions of Azerbaijan. Genet. Resour. Crop Evol., 2015, 62(2): 265-273 CrossRef
  30. Saedi H., Tabatabaei B.E.S., Rahimmalek M., Talebi-Badaf M.R., Rahiminejad M. Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP. Genet. Resour. Crop Evol., 2008, 55(8): 1231-1238 CrossRef
  31. Aghaei M.J., Mazafari J., Taleei A.R., Naghavi M.R., Omidi M. Distribution and diversity of Aegi-lops tauschii in Iran. Genet. Resour. Crop Evol., 2008, 55: 341-349 CrossRef
  32. Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an emporocal study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet., 2004, 109(8): 1710-1717 CrossRef
  33. Matsuoka Y., Takumi S., Kawahara T. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet., 2007, 115(4): 509-518 CrossRef
  34. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methods of field trials]. Moscow, 1985 (in Russ.).
  35. Eissenstat D.M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr., 1992, 15(6-7): 763-782 CrossRef
  36. Sereda S.G., Sedlovskii A.I., Morgunov A.I., Sereda G.A. Biotekhnologiya. Teoriya i praktika, 2007, 2: 67-71 (in Russ.).
  37. Grabovets A.I., Fomenko M.A. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2014, 5(49): 16-19 (in Russ.).
  38. Sayar R., Khemira H., Kharrat M. Inheritance of deeper root length and grain yield in half- diallel durum wheat (Triticum durum) crosses. Ann. Appl. Biol., 2007, 151(2): 213-220 CrossRef
  39. Trethowan R.M., Mujeeb-Kazi A. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci., 2008, 48(4): 1255-1265 CrossRef
  40. Lopes M.S., Reynolds M.P. Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexapliod wheat. Crop Sci., 2011, 51(4): 1617-1626 CrossRef
  41. Narayanan S., Mohan A., Gill K.S., Prasad P.V.V. Variability of root traits in spring wheat germplasm. PLoS ONE, 2014, 9(6): e100317 CrossRef
  42. Ehdae B., Layne A.P., Waines J.G. Root system plasticity to drought influence grain in bread wheat. Euphytica. 2012, 186(1): 219-232 CrossRef
  43. Nazem V., Arzani A. Evaluation of morphological traits diversity in synthetic hexaploid wheat. J. Appl. Environ. Biol. Sci., 2013, 3(7): 20-28.

back