doi: 10.15389/agrobiology.2018.3.464eng

UDC 631.52:581.557:575

Acknowledgments: 
Supported financially by Russian Science Foundation, grant ¹ 14-26-00094Ï

 

EVOLUTIONARY-GENETIC BASES FOR SYMBIOTIC ENGINEERING
IN PLANTS — a mini review

N.A. Provorov, O.P. Onishchuk

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail provorovnik@yandex.ru (✉ corresponding author), olony@yandex.ru

ORCID:
Provorov N.A. orcid.org/0000-0001-9091-9384
Onishchuk O.P. orcid.org/0000-0002-5378-7826

Received November 8, 2017

 

Microbe-plant symbioses have a great role in development and evolution of plants providing their mineral (nitrogenous, phosphorous) nutrition, resistance to pathogens and phytophagans and the developmental regulation under stress conditions (R.J. Rodriguez et al., 2009). Construction of the highly efficient symbioses should be based on the knowledge on pathways and mechanisms of partners’ coevolution occurring in the natural ecosystems and agrocenoses. Using the model of N2-fixing legume-rhizobia symbiosis we show that three major stages of its evolution should be simulated using the methods of symbiotic engineering. It should be aimed at: (i) optimization of partners’ exchange by C- and N-compounds; (ii) suppression of partners’ competition for nutrients and energy obtained from the environment; (iii) activation of partners’ altruistic interactions based on the decrease of microsymbiont survival, for example, development of non-reproducible bacteroids by rhizobia. The first approach may be achieved by an increased assimilation by bacteria of the plant-delivered dicarboxylic acids required for the bacteroid nutrition. It is based on the generation of rhizobia recombinants containing the amplified copies of nif and dct genes encoding for the synthesis and energy supply of nitrogenase. However, this approach is limited by disbalancing the biochemical and developmental processes: a significant (by 70-80 %) increase in N2-fixing activity is accompanied by a limited increase of plant biomass (by 15-20 %). This limitation can be overcome via construction of bacterial strains optimizing the plant development using the biologically active substances (phytohormones, vitamins, lumichrome) ensuring a complete involvement of N2 fixation products in the yield formation. The second approach may be implemented by improving the ability of commercial rhizobia genotypes to compete for inoculation of host plants with the aboriginal strains which possess a high virulence combined with a low N2-fixing activity. Realization of this approach is based on inactivation of genes regulating negatively the early stages of symbiosis development and on the amplification of genes regulating this development positively. The third approach may be realized via manipulations with the rhizobia eff genes identified using Tn5 mutants selected directly in fast-growing alfalfa rhizobia (Sinorhizobium meliloti) for an increased symbiotic efficiency, i.e. the impact of bacteria on the plant yield. This increase is achieved by knockout of the functions required for autonomous (ex planta) bacteria survival in soil but interfering with the symbiotic cooperation. These functions include synthesis of storage compounds (poly-β-hydroxybutyrate, glycogen), assimilation of «non-symbiotic» (not involved in the nutrition bacteroid) carbon sources (sugars) and formation of the cell surface components inducing the host defense responses (lipo- and exopolysaccharides). Prospects for the further increasing the input of «biological» nitrogen in crop nutrition are associated with establishing the nodular symbiosis in the non-legume (e.g., cereal) plants. The relevant approaches include establishment of the plant ability to form N2-fixing nodules based on modifications of homologs of legume Sym genes (G. Oldroyd et al., 2014), introduction of nif genes into mitochondria or plastids which originated from N2-fixing bacteria during symbiogenes of eukaryotic cell (G. López-Torrejón et al., 2016), and the construction of novel N2-fixing cellular organelles (ammonioplasts) providing the optimal conditions for the nitrogenase synthesis and operation.

Keywords: microbial-plant interactions, biological N2 fixation, nodule bacteria, genetic construction, symbiotic engineering, cellular organelles, symbiotrophic plant nutrition, sustainable crop production.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Provorov N.A., Tikhonovich I.A. Geneticheskie osnovy evolyutsii bakterii — simbiontov rastenii [Genetic fundamentals of evolution of symbiotic bacteria of plants]. St. Petersburg, 2016 (in Russ.).
  2. Provorov N.A., Shtark O.Yu., Dolgikh E.A. Zhurnal obshchei biologii, 2016, 77: 329-345 (in Russ.).
  3. Barrow J.R., Lucero M.E., Reyes-Vera I., Havstad K.M. Do symbiotic microbes have a role in plant evolution, performance and response to stress? Communicative & Integrative Biology, 2008, 1: 69-73.
  4. Rodriguez R., Redman R. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot., 2008, 59: 1109-1114 CrossRef
  5. Dorosinskii L.M. Kluben'kovye bakterii i nitragin [Nodulation bavteria abd nitragin]. Leningrad, 1970 (in Russ.).
  6. Tikhonovich I.A., Kruglov Yu.V. Biopreparaty v sel'skom khozyaistve [Biologicals in agriculture]. Moscow, 2005 (in Russ.).
  7. Terpolilli J.J., Hood G.A., Poole P.S. What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv. Microb. Physiol., 2012, 60: 325-389 CrossRef
  8. Friesen M.L. Widespread fitness alignment in the legume-rhizobium symbiosis. New Phytol., 2012, 194: 1096-1111 CrossRef
  9. Heath K.D. Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. Evolution, 2010, 64: 1446-1458 CrossRef
  10. Heath K.D., Burke P.V., Stinchcombe J.R. Coevolutionary genetic variation in the legume-rhizobium transcriptome. Mol. Ecol., 2012, 21: 4735-4747 CrossRef
  11. Provorov N.A., Vorobyov N.I. Simulation of evolution implemented in the mutualistic symbioses towards enhancing their ecological efficiency, functional integrity and genotypic specificity. Theor. Popul. Biol., 2010, 78: 259-269 CrossRef
  12. Law R., Dieckmann U. Symbiosis through exploitation and the merger of lineages in evolution. P. Roy. Soc. B-Biol. Sci., 1998, 265: 1245-1253 CrossRef
  13. Provorov N.A., Dolgikh E.A. Zhurnal obshchei biologii, 2006, 67: 403-422 (in Russ.).
  14. Okazaki S., Sugawara M., Yuhashi K.I., Minamisawa K. Rhizobitoxine-induced chlorosis occurs in coincidence with methionine deficiency in soybeans. Annals of Botany, 2007, 100: 55-59 CrossRef
  15. Yang Y., Zhao J., Morgan R.L., Ma W., Jiang T. Computational prediction of type III secreted proteins from gram-negative bacteria. BMC Bioinformatics, 2010, 11(Suppl. 1): S47 CrossRef
  16. Provorov N.A., Vorob'ev N.I. Prikladnaya biokhimiya i mikrobiologiya, 2015, 51: 363-370 CrossRef (in Russ.).
  17. Onishchuk O.P., Vorob'ev N.I., Provorov N.A. Prikladnaya biokhimiya i mikrobiologiya, 2017, 53: 127-135 CrossRef (in Russ.).
  18. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Tiricz H., Satiat-Jeunemaître B., Alunni B., Bourge M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T., Kondorosi E. Mergaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 2010, 327: 1122-1126 CrossRef
  19. Onishchuk O.P., Vorob'ev N.I., Provorov N.A., Simarov B.V. Ekologicheskaya genetika, 2009, 7: 3-10 CrossRef (in Russ.).
  20. Provorov N.A., Onishchuk O.P., Kurchak O.N. Impacts of inoculation with Sinorhizobium meliloti strains differing in salt tolerance on the productivity and habitus of alfalfa (Medicago sativa L.). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51: 343-350 CrossRef
  21. Provorov N.A., Vorob'ev N.I. Geneticheskie osnovy evolyutsii rastitel'no-mikrobnogo simbioza /Pod redaktsiei I.A. Tikhonovicha. St. Petersburg, 2012.
  22. Provorov N.A., Andronov E.E. Mikrobiologiya, 2016, 2: 195-206 CrossRef (in Russ.).
  23. Maroti G., Downie J.A., Kondorosi E. Plant cystein-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr. Opin. Plant Biol., 2015, 26: 57-63 CrossRef
  24. Denison R.F., Kiers E.T. Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect., 2004, 6: 1235-1239 CrossRef
  25. Provorov N.A., Onishchuk O.P., Yurgel' S.N., Kurchak O.N., Chizhevskaya E.P., Vorob'ev N.I., Zatovskaya T.V., Simarov B.V. Genetika, 2014, 50: 1273-1285 CrossRef (in Russ.).
  26. Sachs J.L., Russell J.E., Hollowell A.C. Evolutionary instability of symbiotic function in Bradyrhizobium japonicum. PLoS ONE, 2011, 6: e26370 CrossRef
  27. Ausubel F.M. Twists and turns: my carrier path and concerns about the future. Genetics, 2014, 198: 431-434 CrossRef
  28. Berman J., Gershoni J.M., Zamir A. Expression of nitrogen fixation genes in foreign hosts. Assembly of nitrogenase Fe protein in Escherichia coli and in yeast. J. Biol. Chem., 1985, 260: 5240-5243.
  29. Udvardi M., Poole P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol., 2013, 64: 201-225 CrossRef
  30. Ran L., Larsson J., Vigil-Stenman T., Nylander J.A.A., Ininbergs K., Zheng W.W., Lapidus A., Lowry S., Haselkorn R., Bergman B. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE, 2010, 5: e11486 CrossRef
  31. Delaux P.M., Radhakrishnan G.V., Jayaramana D., Cheema J., Malbreild M., Volkening J.D., Sekimoto H., Nishiyama T., Melkonian M., Pokorny L., Rothfels C.J., Sederoff H.W., Stevenson D.W., Surek B., Zhang Y., Sussman M.R., Dunandd C., Morris R.J., Roux C., Wong G. Oldroyd G.E., Ane J.M. Algal ancestor of land plants was preadapted for symbiosis. PNAS USA, 2015, 112: 13390-13395 CrossRef
  32. Saikia S.P., Jain V., Khetarpal S., Aravind S. Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Current Science, 2007, 93: 1296-1300.
  33. Chebotar V.K., Shcherbakova A.V., Maslennikova S.N., Zaplatkin A.N., Kanarskiy A.V., Zavalin A.A. Endophytic bacteria of woody plants as a basis of complex microbial preparations for agriculture and forestry. Russian Agricultural Sciences, 2016, 42: 339-342 CrossRef
  34. Rodriguez R.J., Freeman D.C., McArthur E.D., Kim Y.O., Redman R.S. Symbiotic regulation of plant growth, development and reproduction. Communicative & Integrative Biology, 2009, 2: 141-143.
  35. Clay K., Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 2002, 160: S99-S127 CrossRef
  36. Cho H.S., Park S.Y., Ryu C.M., Kim J.F., Kim J.G., Park S.H. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol., 2007, 60: 14-23 CrossRef
  37. Lemaire B., Vandamme P., Merckx V., Smets E., Dessein S. Bacterial leaf symbiosis in angiosperms: host specificity without co-speciation. PLoS ONE, 2011, 6: e24430 CrossRef
  38. Vavilov N.I. Selektsiya kak nauka. Teoreticheskie osnovy selektsii. Tom 1. Obshchaya selektsiya rastenii [Breeding as a field of science. V. 1. Plant selection]. Moscow, 1935 (in Russ.).
  39. Oldroyd G., Dixon R. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotech., 2014, 26: 19-24 CrossRef
  40. López-Torrejón G., Jiménez-Vicente E., María Buesa J., Hernandez J.A., Verma H.K., Rubio L.M. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nature Communications, 2016, 7: 11426 CrossRef

 

back