doi: 10.15389/agrobiology.2018.3.539eng

UDC 633.812:631.526.3:57.017.3

Acknowledgments:
Supported financially by Russian Science Foundation (grant ¹ 14-50-00079)

 

ADAPTIVENESS OF PROMISING LAVENDER AND LAVANDIN
CULTIVARS UNDER in vitro CULTURE AND ex situ

I.V. Mitrofanova, A.E. Palii, O.A. Grebennikova, V.A. Brailko,
N.P. Lesnikova-Sedoshenko, V.D. Rabotyagov, O.V. Mitrofanova

Nikita Botanical Gardens — National Scientific Center RAS, Federal Agency for Scientific Organizations, 52, ul. Nikitskii spusk, pgt Nikita, Yalta, Republic of Crimea, 298648 Russia, e-mail irimitrofanova@yandex.ru (✉ corresponding author) , onlabor@yandex.ru, oksanagrebennikova@yandex.ru, valentina.brailko@yandex.ru, nplesnikova@yandex.ru, runastep@mail.ru, invitro_plant@mail.ru

ORCID:
Mitrofanova I.V. orcid.org/0000-0002-4650-6942
Palii A.E. orcid.org/0000-0002-0139-5089
Grebennikova O.A. orcid.org/0000-0001-6850-4924
Brailko V.A. orcid.org/0000-0003-3853-0210
Lesnikova-Sedoshenko N.P. orcid.org/0000-0001-9967-8505
Rabotyagov V.D. orcid.org/0000-0002-5234-3393
Mitrofanova O.V. orcid.org/0000-0002-4878-2828

Received July 5, 2017

 

Lavandula angustifolia Mill. and lavandin (Lavandula × intermedia Emeric ex Loisel) are promising fragrant plants with medicinal, aromatic and ornamental properties. To obtain high quality healthy planting material, in vitro cultures of valuable cultivars Belyanka, Record (lavender) and Rabat, Snezhnyi Bars (lavandin) were derived. Obtained regenerants were cultured for 4-5 months on Murashige and Skoog medium with 0.3 mg/l kinetin, 0.025 mg/l NAA è 0.25 mg/l GA3 in growth chamber at 25±1 °C under 16-h photoperiod and light intensity of 37.5 μM • m-2 • s-1. Intact plants were studied during the growing season. In order to reveal plant morphogenetic capacity, biochemical stress indicators, indexes of photosynthetic activity, maximum fluorescence (Fm), stationary level of fluorescence (Fst) and water regime were determined. The proline content of lavender and lavandin plants grown ex situ was rather high (6.67-21.59 μg/g). In in vitro micro-plants, although there was considerable hydration of the plant tissues, the proline concentration was higher than that in the intact plants (8.24-35.72 μg/g). Intact lavender and lavendin plants accumulated high amounts of phenolic compounds (1033-1492 mg/100 g) and ascorbic acid (14.96-20.06 mg/100 g). In plants under controlled conditions, the concentration of phenolic compounds and ascorbic acid was lower (490-777 and 4.95-5.98 mg/100 g, respectively), which is caused by significant waterlogging of tissues and lack of stress. Regardless of the growing condition, the level of phenolic compounds was higher in the lavandin cultivars compared to lavandula plants. Open field cultivated plants were distinguished by high activity of catalase (18.13-36.97 g O2 • g-1 • min-1) and superoxide dismutase (12.55-14.82 a.u./g). Under the hydrothermal stress effect ex situ, relative photosynthetic activity and viability index indicated minor decrease in assimilation processes in lavender cultivars but was within vital limits. In in vitro culture, the catalase activity of lavender cultivars was higher than that of lavandin. At the same time, SOD and PPO activity of lavender micro-plants in vitro was lower than that of lavandin micro-plants. In open field cultivation, leaf tissue hydration of tested plants was 56-62 %, with greater part of bound water. In plants cultured in vitro, the rate of hydration was high (70-77 %), with the same trend of water fractional composition. Under the controlled conditions and nominal heterotrophic nutrition type, photosynthetic activity was 0.28-0.55 a.u. with the maximum in the Rabat cultivar. Values of chlorophyll fluorescence induction and vitality index indicated no photoinhibition. It was found out the lavandin cultivars had better capacity for a wide use under various conditions.

Keywords: Lavandula sp., biochemical indicators, photosynthetic activity, water regime, in vitro, ex situ.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Libus' O.K., Rabotyagov V.D., Kut'ko S.P., Khlypenko L.A. Efiromaslichnye i pryano-aromaticheskie rasteniya [Essential oil and spicy aromatic plants]. Kherson, 2004 (in Russ.).
  2. Torras-Claveria L., Jauregui O., Bastida J., Codina C., Viladomat F. Antioxidant activity and phenolic composition of Lavandin (Lavandula ´ intermedia Emeric ex Loiseleur) Waste. J. Agric. Food Chem., 2007, 55: 8436-8443 CrossRef
  3. Mitrofanova I., Brailko V., Lesnikova-Sedoshenko N., Mitrofanova O. Clonal micropropagation and some physiology aspects of essential oil roses valuable cultivars regeneration in vitro. Agriculture and Forestry, 2016, 62(4): 73-81 CrossRef
  4. Mitrofanova I.V., Chirkov S.N., Lesnikova-Sedoshenko N.P., Chelombit S.V., Zakubanskiy A.V., Rabotyagov V.D., Mitrofanova, O.V. Micropropagation of Lavandulaangustifolia Mill. 'Record' and 'Belyanka'. Acta Hortic.,2017, 1187: 37-42 CrossRef
  5. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, 7: 405-410 CrossRef
  6. Mullineaux Ph., Baker N. Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol., 2010, 154(2): 521-525 CrossRef
  7. Kavi Kishor P.B., Sangam S., Amrutha R.N., Laxmi P.S., Naidu K.R., Rao S., Reddy K.J., Theriappan P., Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implication in plant growth and abiotic stress tolerance. Current Science, 2005, 88(3): 424-438.
  8. Smirnoff N. Ascorbic acid: metabolism and functions of a multifacetted molecule. Curr. Opin. Plant Biol., 2000, 3: 229-235.
  9. Zaprometov M.N. Fenol'nye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh. Moscow, 1993 (in Russ.).
  10. Araji S., Grammer T.A., Gertzen R., Anderson S.D., Mikulic-Petkovsek M., Veberic R., Phu M.L., Solar A., Leslie C.A., Dandekar A.M., Escobar M.A. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol., 2014, 164(3): 1191-203 CrossRef
  11. Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 2002, 53(372): 1331-1341 CrossRef
  12. Racchi M.L. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants, 2013, 2: 340-369 CrossRef
  13. Baranenko V.V. Tsitologiya, 2006, 48(6): 465-474 (in Russ.).
  14. Budagovsky A., Budagovskaya O., Budagovsky I. Biological structure as a converter of coherent radiation. In: Biophotonics and coherent systems in biology. Springer, NY, 2006: 53-70 CrossRef
  15. Romanov V.A., Galelyuka I.B., Sarakhan Ie.V. Portable fluorometer Floratest and specifics of its application. Sensor Electronics and Microsystem Technologies, 2010, 7(3): 39-44.
  16. Stirbet A., Govindjee J. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photoch. Photobio. B, 2011, 104: 236-257 CrossRef
  17. Ralph P.J., Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot., 2005, 82(3): 222-237 CrossRef
  18. Strizh I.G., Neverov K.V. Photoinhibition of photosystem 2 in vitro: spectral and kinetic analysis. Russian Journal of Plant Physiology, 2007, 54(4): 439-499 CrossRef
  19. Camejo D., Jimenez A., Alarcon J.J., Torres W., Gomez J.M., Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol., 2006, 33(2): 177-187 CrossRef
  20. Khan N.A., Singh S., Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci., 2007, 193(6): 435-444 CrossRef
  21. Andryushchenko V.K., Sayanova V.V., Zhuchenko A.A. Izvestiya AN MSSR, 1981, 4: 55-60 (in Russ.).
  22. Gerzhikova V.G. Metody tekhnokhimicheskogo kontrolya v vinodelii [Technological control in winemaking]. Simferopol', 2002 (in Russ.).
  23. Rikhter A.A. Trudy Gosudarstvennogo Nikitskogo botanicheskogo sada, 1999, 108: 121-129 (in Russ.).
  24. Voskresenskaya O.L., Alyabysheva E.A., Polovnikova M.G. Bol'shoi praktikum po bioekologii [Practical works on biolecology]. Ioshkar-Ola, 2006 (in Russ.).
  25. Ermakov A.I. Metody biokhimicheskogo issledovaniya rastenii [Methods of plant biochemistry]. Leningrad, 1987 (in Russ.).
  26. Kostyuk V.A., Potapovich A.I., Kovaleva Zh.V. Voprosy meditsinskoi khimii, 1990, 2: 88-91 (in Russ.).
  27. Ross J. The radiation regime and architecture of plant stands (Tasks for vegetation science, v. 3 book series). Springer, Dordrecht, 1981 CrossRef
  28. Braion O.V., Kornººv D.Yu., Snºgur O.O., Kitaºv O.². ²nstrumental'ne vivchennya fotosintetichnogo aparatu za dopomogoyu ³ndukts³¿ fluorestsents³¿ khlorof³lu: Metodichn³ vkaz³vki dlya student³v b³olog³chnogo fakul'tetu [Instrumental study of photosynthetic system based on chloropphyl fluorescwnce]. Ki¿v, 2000.
  29. Lyers S., Caplan P. Products of praline catabolism can induce osmotically regulated genes in rice. Plant Physiol., 1998, 116: 203-211.
  30. Mazid M., Khan T.A., Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 2011, 3(2): 232-249.s

back