doi: 10.15389/agrobiology.2018.3.485eng

UDC 633.854.78:615.9

 

THE PROBLEM OF SAFE SUNFLOWER (Helianthus annuus L.) USE
FOR FOOD AND FODDER PURPOSES (review)

G.P. Kononenko, M.I. Ustyuzhanina, A.A. Burkin

All-Russian Research Institute of Sanitary, Hygiene and Ecology, Federal Agency of Scientific Organizations, 5, Zvenigorodskoe sh., Moscow, 123022 Russia, e-mail kononenkogp@mail.ru (✉ corresponding author), ustpuma@list.ru, aaburkin@mail.ru

ORCID:
Kononenko G.P. orcid.org/0000-0002-9144-615X
Ustyuzhanina M.I. orcid.org/0000-0001-7405-7577
Burkin A.A. orcid.org/0000-0002-5674-2818

Received July 19, 2017

 

Risks associated with the contamination of agricultural products with mycotoxins have been and still remain under the close attention of the world’s biological science. In recent decades, special concern was related to the state of the grain harvest, intended for food and feed purposes. In most grain-producing countries, significant progress has been made in the identification of toxin-forming micromycetes and assessing the risk caused by the spread of mycotoxins (T.Yu. Gagkaeva et al., 2004; G.P. Kononenko et al., 2008, 2009; P.M. Scott et al., 2012). For the second most important group of agricultural plants, the oilseeds represented mainly by sunflower, soybean, peanut, rapeseed and cotton, there is a significant lag in such studies, which only has to be overcome. Helianthus annuus L. is cultivated everywhere, practically in all regions of the world, suitable for agriculture, and the area of its commercial cultivation is also extremely wide. The group of world leaders in the production of sunflower seeds includes the Russian Federation, Ukraine, Argentina, India and China, but this crop is also cultivated on a significant scale in other countries. The purpose of this review was to systematize and compare the world data on the composition of mycobiota and the nature of contamination by mycotoxins of sunflower (Helianthus annuus L.) seeds and the products of their processing. In surveys conducted in the Middle East, Africa, South and South-East Asia, the mycobiota of the seeds revealed the dominance of fungi of the genus Aspergillus with the typical species A. flavus and the frequent detection of A. niger, and for less common fungi Penicillium, Alternaria and Fusarium common regularities were not traced. In India, Pakistan, Tanzania, Malaysia, Iran and Egypt, the contamination of seeds by aflatoxins was assessed as very high, and the seed processing products for oil retained the same type of contamination, but with an increased detection rate and a more intensive accumulation of mycotoxins (S. Dawar et al., 1991; S.K. Abdullah et al., 2010; H.R. Beheshti et al., 2013; J.A. Mmongoyo et al., 2017). In a number of works, experimental confirmation was obtained that, when storing seeds, especially in conditions of high humidity and temperature, the accumulation of aflatoxins sharply increases (H.H. Casper et al., 1982; P. Jeswal et al., 2013). In the countries of South America (Argentina, Brazil), fungi of the genera Alternaria, Fusarium and alterniotoxins predominated in sunflower seeds (C.R. Pozzi et al., 2005). In European countries, the fungi of the genera Alternaria and Fusarium are also classified as the main components of the mycobiota of sunflower seeds, but the data on the species composition of these micromycetes and the contamination of the seeds with mycotoxins are very limited. Long-term studies performed in the Russian Federation show widespread distribution of fungi of the genus Alternaria on the vegetative plants and sunflower seeds, most often of small-spore unspecialized species A. tenuissima, A. alternata and ‘A. infectoria’ complex (M.V. Ivebor et al., 2012). Fusarium infection in the European area of cultivation is shown annually, while the species diversity is very significant (A.A. Vyp-ritskaya, 2015). Nevertheless, until now, mycotoxicological evaluation of the yield of sunflower seeds in the main areas of commercial cultivation of the crop in our country has not been carried out. During monitoring surveys of sunflower oil cakes and meals, multiple combined contamination by mycotoxins was established with dominance of alternariol and ochratoxin A and a significant contribution of T-2 toxin, as well as citrinin, emodin, mycophenolic acid and cyclopiazonic acid (E.V. Zotova et al., 2017). The nature of the contamination of this feed raw material in the Russian Federation is fundamentally different from that described in the countries of the Middle East, Africa, South and South-East Asia, primarily due to the absence of aflatoxin B1 and the significant occurrence of ochratoxin A, often in conjunction with citrinin. The generalization and comparative analysis of the broad database of scientific data, undertaken in this paper, allow us to identify ways of eliminating shortcomings in restricting the standardization of mycotoxins and to outline the most relevant areas for future research.

Keywords: Helianthus annuus L., sunflower, seeds, sunflower meal, oilcake, micromycetes, fungal diseases, mycotoxins.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Gagkaeva T.Yu., Yli-Mattila T. Genetic diversity of Fusarium graminearum in Europe and Asia. Eur. J. Plant Pathol., 2004, 110: 550-562 CrossRef
  2. Jørgensen K. Occurrence of ochratoxin A in commodities and processed food — a review of EU occurrence data. Food Addit. Contam., 2005, Suppl. 1: 26-30 CrossRef
  3. Scott P.M., Zhao W., Feng S., Lau B.P.-Y. Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Res., 2012, 28(4): 261-266 CrossRef
  4. Prodi A., Salomoni D., Bertacchini E., Alkadri D., Pisi A., Tonti S., Alberti I., Dal Pra M., Pancaldi D., Covarelli L., Nipoti P. Determination of deoxynivalenol and nivalenol producing chemotypes of Fusarium graminearum isolated from durum wheat in different Italian regions. Plant Breeding and Seed Science, 2011, 64(1): 75-80 CrossRef
  5. Kononenko G.P., Burkin A.A. Fusariotoxins content in maize and rice grain harvested in the main regions of cultivation in the Russian Federation. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2008, 5: 88-91.
  6. Kononenko G.P., Burkin A.A. About fusariotoxins contamination of cereals used for fodder. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2009, 4: 81-88.
  7. Lukomets V.M., Piven' V.T., Tishkov N.M. Bolezni podsolnechnika [Diseases of sunflower plants]. BASF, 2011 (in Russ.).
  8. Turner W.B., Aldridge D.C. Fungal metabolites II. Academic Press, London—NY—Paris, 1983.
  9. Weidenbörner M. Encyclopedia of food mycotoxins. Springer, Berlin—Heidelberg—NY, 2001.
  10. Handbook of applied mycology. V. 5: Mycotoxins in ecological systems. D. Bhatnagar, E.B. Lillehoj, D.K. Arora (eds.). Marcel Dekker, Inc., NY—Basel—Hong Kong, 1992.
  11. Banu N., Muthumary J.P. Mycobiota of sunflower seeds and samples collected from vegetable oil refinery located in Tamilnadu, India. Mycol. Prog., 2005, 4(3): 195-204 CrossRef
  12. Jeswal P., Kumar D. Mycobiota and mycotoxins in sunflower seeds in pre and post-harvest condition from Bihar state, India. International Journal of Environmental Engineering Science and Technology Research, 2013, 1(12): 328-339.
  13. Dawar S., Ghaffar A. Detection of the seedborne mycoflora of sunflower. Pakistan J. Bot., 1991, 23(2): 173-178.
  14. Sharfun-Nahar S., Mushtaq M., Hashmi M.H. Seed-borne mycoflora of sunflower (Helianthus annuus L.). Pakistan J. Bot., 2005, 37: 451-457.
  15. Abdullah S.K., Al-Mosawi K.A. Fungi associated with seeds of sunflower (Helianthus annuus) cultivars grown in Iraq. Phytopathologia, 2010, 57: 11-20.
  16. Reddy K.R.N., Farhana N.I., Salleh B. Occurrence of Aspergillus spp. and aflatoxin B1 in Malaysian foods used for human consumption. J. Food Sci., 2011, 76: T99-T104 CrossRef
  17. Mngadi P.T., Govinden R., Odhav B. Co-occurring mycotoxins in animal feeds. Afr. J. Biotechnol., 2008, 7(13): 2239-2243.
  18. Godika S., Agrawal K., Sing T. Fungi associated with seeds of sunflower Helianthus annuus (L.) grown in Rajasthan and their phytopathological effects. Journal of Phytological Research, 1996, 9: 61-63.
  19. Zad J. A note on the mycoflora of sunflower seeds in Iran. Iranian Journal of Plant Pathology, 1979, 15: 953-956.
  20. Ataga A.E., Akueshi C.O. Fungi associated with sunflower seed in Nigeria. Seed Research, 1996, 24(1): 64-65.
  21. Siddig A.A. Study of seed-borne fungi of sunflower (Helianthus annuus L.). A thesis for the Degree of M.Sc. in Crop Protection. University of Khartoon, Khartoon, 2008.
  22. Diaz G., Lozano M., Acuña A. Prevalence of Aspergillus species on selected Colombian animal feedstuffs and ability of Aspergillus section Flavi to produce aflatoxins. World Mycotoxin J., 2008, 2(1): 31-34 CrossRef
  23. Mmongoyo J.A., Wu F., Linz J.E., Nair M.G., Mugula J.K., Tempelman R.J., Strasburg G.M. Aflatoxin levels in sunflower seeds and cakes collected from micro- and small-scale sunflower oil processors in Tanzania. PLoS ONE, 2017, 12(4): 1-14 CrossRef
  24. Cole R.J., Cox R.H. Handbook of toxic fungal metabolites. Academic Press, NY—London—Toronto, 1981.
  25. Suryanarayanan T.S., Suryanarayanan C.S. Fungi associated with stored sunflower seeds. Journal of Economic and Taxonomic Botany, 1990, 14(1): 174-176.
  26. Dawar S., Ghaffar A. Detection of aflatoxin in sunflower seed. Pakistan J. Bot., 1991, 23(1): 123-126.
  27. Mabrouk S.S., El Shayeb N.M.A., Osman H.G. Probability of aflatoxin formation or inhibition on some Egyptian agricultural food commodities. Toxicon, 1979, 17(Suppl. 1): 111.
  28. Beheshti H.R., Asadi M. Aflatoxins in sunflower and safflower seeds from Iran. Food Addit. Contam., 2013, 6(1): 68-71 CrossRef
  29. Balachandran S., Parthasarathy K.R. Occurrence of cyclopiazonic acid in feeds and feedstuffs in Tamil Nadu, India. Mycopathologia, 1996, 133(3): 159-162 CrossRef
  30. Devi S.A. A study on the mycotoxin isolated from sunflower [Helianthus annuus (L.)]. Mysore J. Agr. Sci., 1988, 22(Suppl. 1): 236.
  31. Suganthi M.P.F., Ravi R., Purushothaman M.R., Mohan B., Vasanthakumar P. Occurrence of ochratoxin A in sunflower cake and evaluation of detoxified sunflower cake in poultry. Indian Journal of Poultry Science, 2003, 38(1): 37-41.
  32. Khayoon W.S., Saad B., Yan C.B., Hashim N.H., Ali A.S.M., Salleh M.I., Salleh B. Determination of aflatoxins in animal feeds by HPLC with multifunctional column clean-up. Food Chem., 2010, 118: 882-886 CrossRef
  33. El-Maraghy S.S.M., El-Maghraby O.M.O. Mycoflora and mycotoxins of sunflower Helianthus annus (L.) seeds in Egypt. 1. Sugar fungi and natural occurrence of mycotoxins. Qatar University Science Journal, 1986, 6: 107-121.
  34. Shahda W.T., Tarabeih A.M., Michail S.H., Hemeda A.A.H. Fungi associated with sunflower seeds in Egypt with reference to chemical control measures. Journal of King Saud University. Agricultural Sciences, 1991, 3: 287-293.
  35. El-Wakil D.A. Seed-borne fungi of sunflower Helianthus annuus (L.) and their impact on oil quality. IOSR Journal of Agriculture and Veterinary Science, 2014, 6(6): 38-44.
  36. Arafa M.K.M., Hassan M.H.A., Abdel-Sater M.A. Sunflower seed discoloration and its relation to seed quality, mycotoxin production, and emergence damping-off. Assiut Journal of Agricultural Sciences, 2000, 31(1): 231-247.
  37. Casper H., Backer L. Aflatoxins in sunflowers. N. Dak. Farm Res., 1982, 40(1): 9.
  38. Casper H.H., Backer L.F., Kunerth W. Survey of North Dakota sunflower seeds for aflatoxin. Journal of the Association of the Official Analytical Chemists, 1981, 64(1): 228-230.
  39. Wood G.E. Aflatoxins in domestic and imported foods and feeds. Journal of the Association of the Official Analytical Chemists, 1989, 72(4): 543-548.
  40. Ross P.F., Rice L.G., Casper H.H., Crenshaw J.D., Richard J.L. Novel occurrence of cyclopiazonic acid in sunflower seeds. Vet. Hum. Toxicol., 1991, 33(3): 284-285.
  41. Etcheverry M., Dalcero A., Chulze S., Apro N., Fusero S., Farnochi M. Studies on damage to sunflower seeds: water activity, germination, acidity index and aflatoxin B1 presence. Int. J. Food Microbiol., 1989, 8(4): 363-365.
  42. Pozzi C.R., Braghini R., Arcaro J.R.P., Zorzete P., Israel A.L.M., Pozar I.O., Denucci S., Corrêa B. Mycoflora and occurrence of alternariol and alternariol monomethyl ether in Brazilian sunflower from sowing to harvest. J. Agr. Food Chem., 2005, 53(14): 5824-5828 CrossRef
  43. Torres A., Chulze S., Varsavasky E., Rodriguez M. Alternaria metabolites in sunflower seeds. Incidence and effect of pesticides on their production. Mycopathologia, 1993, 121(1): 17-20 CrossRef
  44. Combina M., Dalcero A., Varsavasky E., Torres A., Etcheverry M., Rodriguez M., Gonzalez Quintana H. Effect of heat treatments on stability of alternariol, alternariol monomethyl ether and tenuazonic acid in sunflower flour. Mycotoxin Res., 1999, 15(1): 33-38 CrossRef
  45. Škrinjar M.M., Petrovi? Z.M., Blagojev N.T., Šošo V.M. Sunflower seed for human consumption as a substrate for the growth of mycopopulations. Acta Periodica Technologica, 2012, 43: 115-121 CrossRef
  46. Koponen H., Tulisalo U. Fungi found on Helianthus annuus in Finland. Karstenia, 1982, 22(1): 9-10.
  47. Palmisano F., Visconti A., Bottalico A., Sibilia A. Profiling of Alternaria mycotoxins in foodstuffs by high-performance liquid chromatography with diode-array ultra-violet detection. J. Chromatogr., 1989, 465(2): 305-313.
  48. Palmisano F., Zambonin P.G., Visconti A., Bottalico A. Determination of Alternaria mycotoxins in foodstuffs by gradient elution liquid chromatography with electrochemical detection. Chromatographia, 1989, 27(9-10): 425-430.
  49. Rafai P., Bata À., Jakab L., Ványi A. Evaluation of mycotoxin-contaminated cereals for their use in animal feeds in Hungary. Food Addit. Contam., 2000, 17(9): 799-808 CrossRef
  50. Food and nutrition paper, perspective on mycotoxins. FAO, 1979: 44-120.
  51. Finoli C., Vecchio A., Sirtori C., Vercesi A. Fungal contamination and mycotoxin occurrence in raw materials and finished feeds. Tecnica Molitoria, 2004, 55(3): 223-234.
  52. Eklöf D. Survey of mycotoxin producing fungi in goji berries, oil seeds and walnuts on the Swedish market. Degree report. Uppsala University, 2013. Accessed http://files.webb.uu.se/uploader/271/BIOMSc-13-049-Eklof-Disa-report.pdf. No date.
  53. López P., Venema D., Mol H., Spanjer M., de Stoppelaar J., Pfeiffer E., de Nijs M. Alternaria toxins and conjugates in selected foods in the Netherlands. Food Control, 2016, 69: 153-159 CrossRef
  54. López P., Venema D., de Rijk T., de Kok A., Scholten J.M., Mol H.G.J., de Nijs M. Occurrence of Alternaria toxins in food products in the Netherlands. Food Control, 2016, 60: 196-204 CrossRef
  55. Soukup S.T., Kohn B.N., Pfeifer E., Geisen R., Metzler M., Bunzel M., Kulling S.E. Sulfoglucosides as novel modified forms of the mycotoxins alternariol and alternariol monomethyl ether. J. Agr. Food Chem., 2016, 64(46): 8892-8901 CrossRef
  56. Nawaz S., Scudamore K.A., Rainbird S.C. Mycotoxins in ingredients of animal feeding stuffs: I. Determination of Alternaria mycotoxins in oilseed rape meal and sunflower seed meal. Food Addit. Contam., 1997, 14(3): 249-262.
  57. EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA Journal, 2011, 9(10): 2407 CrossRef
  58. Ivebor M.V., Antonova T.S. Sovremennaya mikologiya v Rossii, 2012, 3: 280-281 (in Russ.).
  59. Gor'kovenko V.S., Smolyanaya N.M. Sovremennaya mikologiya v Rossii, 2017, 7: 38-40 (in Russ.).
  60. Vypritskaya A.A. Mikobiota podsolnechnika v Tambovskoi oblasti: monografiya [Mycobiota of sunflower plants in the Tambov region: a monography]. Tambov, 2015 (in Russ.).
  61. Gannibal F.B. Vestnik zashchity rastenii, 2011, 1: 13-19 (in Russ.).
  62. Yakutkin V.I. Sovremennaya mikologiya v Rossii, 2012, 3: 325-326 (in Russ.).
  63. Maslienko L.V., Muradosilova N.V. Nauchno-tekhnicheskii byulleten' Vserossiiskogo nauchno-issledovatel'skogo instituta maslichnykh kul'tur, 2000, 123: 25-31 (in Russ.).
  64. Antonova T.S., Araslanova N.M., Saukova S.L. Doklady RASKHN, 2002, 2: 6-8 (in Russ.).
  65. Kotlyarova I.A., Tereshchenko G.A. Nauchno-tekhnicheskii byulleten' Vserossiiskogo nauchno-issledovatel'skogo instituta maslichnykh kul'tur, 2013, 2(155-156): 115-123 (in Russ.).
  66. Vypritskaya A.A., Puchnin A.M., Kuznetsov A.A. Vestnik TGU, 2012, 17(1): 394-398 (in Russ.).
  67. Burkin A.A., Kononenko G.P. Sovremennaya mikologiya v Rossii, 2002, 1: 263 (in Russ.).
  68. Burkin A.A., Kononenko G.P., Soboleva N.A. Doklady RASKHN, 2005, 2: 47-49 (in Russ.).
  69. Kononenko G.P., Burkin A.A. A survey on the occurrence of citrinin in feeds and their ingredients in Russia. Mycotoxin Research, 2008, 24(1): 3-6.
  70. Kononenko G.P., Burkin A.A. Uspekhi meditsinskoi mikologii, 2007, 9: 88-89 (in Russ.).
  71. Kononenko G.P., Burkin A.A. Mikologiya i fitopatologiya, 2008, 42(2): 178-184 (in Russ.).
  72. Kononenko G.P., Burkin A.A. Peculiarities of feed contamination with citrinin and ochratoxin A. Agricultural Sciences, 2013, 4(1): 34-38.
  73. Pfohl-Leszkowicz A., Manderville R.A. Ochratoxin A. An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res., 2007, 51(1): 61-99 CrossRef
  74. Zotova E.V., Kononenko G.P., Burkin A.A. Sovremennaya mikologiya v Rossii, 2017, 7: 202-205 (in Russ.).
  75. Juri? V., Pelagi? V.R., Uš?ebrka G. Ochratoxin A in feedstuffs — possible source of meat contamination. Technologija Mesa, 2001, 42(1/2): 83-86.
  76. Nazar'ko M.D., Ochered'ko N.S. Izvestiya VUZov. Pishchevaya tekhnologiya, 2006, 2-3: 109-110 (in Russ.).
  77. Gigienicheskie trebovaniya bezopasnosti i pishchevoi tsennosti pishchevykh produktov. Sanitarno-epidemiologicheskie pravila i normativy. SanPiN 2.3.2.1078-01 [Hygienic regulation of food quality. SanPiN 2.3.2.1078-01].Moscow, 2008 (in Russ.).
  78. TR TS 021/2011 Tekhnicheskii reglament Tamozhennogo soyuza «O bezopasnosti pishchevoi produktsii» Utverzhden resheniem Komissii Tamozhennogo soyuza ot 9 dekabrya 2011 g. ¹ 880 [Technical regulations of the Customs Union on food safety of December 9, 2011 No 880]. Moscow, 2011 (in Russ.).
  79. TR TS 015/2011 Tekhnicheskii reglament Tamozhennogo soyuza «O bezopasnosti zerna». Utverzhden resheniem Komissii Tamozhennogo soyuza ot 9 dekabrya 2011 g. ¹ 874 [Technical regulations of the Customs Union on grain safety of December 9, 2011 No 874]. Moscow, 2011 (in Russ.).
  80. GOST 11246-96 Shrot podsolnechnyi. Tekhnicheskie usloviya [Sunflower cake. Technical conditions. State Standard]. Moscow, 1996 (in Russ.).
  81. GOST 80-96 Zhmykh podsolnechnyi. Tekhnicheskie usloviya Sunflower cake. Technical conditions. State Standard]. Moscow, 1996 (in Russ.).
  82. Egorova T.A., Lenkova T.N. Rapeseed (Brassica napus L.) and its prospective useage in poultry diet (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(2): 172-182 CrossRef
  83. Spring O., Pfannstiel J., Klaiber I., Conrad J., Beifuß U., Apel L., Aschenbrenner A.K., Zipper R. The nonvolatile metabolome of sunflower linear glandular trichomes. Phytochemistry, 2015, 119: 83-89 CrossRef

back