doi: 10.15389/agrobiology.2018.3.645eng

UDC 633.9:581.4:58.087

 

NONDESTRUCTIVE LEAF AREA AND FRESH WEIGHT ESTIMATION FOR Taraxacum kok-saghyz Rodin AND THEIR SAMPLING NUMBER

G. Shen1,2, W. Wang1, F. Chen2, F. Zheng2, D. Wei2, L. Li2, X. Zeng3,
Y. Fan3, N.G. Kon’kova4

1The Ministry of Education Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040 e-mail: shen19772@163.com;
2Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, e-mail: shen19772@163.com;
3Heilongjiang Academy of Sciences, Harbin 150040 e-mail: xxi2004@mail.ru (✉ corresponding author)
4
Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency for Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail n.konkova@vir.nw.ru (✉ corresponding author)

ORCID:
Shen G. orcid.org/0000-0001-5320-6465
Li L. orcid.org/0000-0002-4423-6934
Wang W. orcid.org/0000-0003-0465-686X
Zeng X. orcid.org/0000-0002-2042-9969
Chen F. orcid.org/0000-0002-8890-9782
Fan Y. orcid.org/0000-0002-4582-4172
Zheng F. orcid.org/0000-0002-8966-5230
Kon’kova N.G. orcid.org/0000-0002-4920-3904
Wei D. orcid.org/0000-0002-8610-4921

Received July 7, 2017

 

Kok-saghyz (Taraxacum kok-saghyz Rodin), Russian dandelion, is a perennial plant widely recognized as one of the most promising sources of natural rubber. The works to utilize natural rubber are underway in the United States, China and Western Europe (Germany, Spain, Czech Republic and the Netherlands). The aim of this study was to determine nondestructive models for estimating leaf area and fresh weight of Russian dandelion plants. Regression analyses were performed between leaf area, fresh weight, leaf length, and leaf width in two hundred and fifty leaf samples collected during different growth stages of Russian dandelion plants. Data from another fifty leaves were used for validating the proposed models. Regression analyses were performed among ten data groups with different numbers of data randomly selected from the total three hundred leaves data set to determine the smallest sampling number for applying the final models correctly. The model for estimating leaf area (LA) is: LA = 6226,424 + 26,31L + 545,334W - 313,993L0,5 - 3138.047W0,5 - 0.009L2 - 3,86W2 + 0,057LW, with R2 and RMSE values of 0.818 and 168.29, respectively. The model for estimating leaf fresh weight (FW) is: FW = 1125.572 ?24.857L + 233.070W + 0.055LW + 276.956L0,5 - 1264.466W0,5 + 0.067L2 - 1.964W2, with R2 and RMSE values of 0.735 and 87.84, respectively. At least ten leaf samples are required when applying the two models. Determining transformed forms of leaf dimensions that are linearly related to leaf area and fresh weight, and integrating all of them into one equation maybe a better solution for establishing models to estimate leaf area and fresh weight of plant species, particularly those with higher variation among individual leaves.

Keywords: Taraxacum kok-saghyz Rodin, leaf length, leaf width, estimation model, regression analysis.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Van Beilen J.B., Poirier Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol., 2007, 25(11): 522-529 CrossRef
  2. Venkatachalam P., Geetha N., Sangeetha P., Thulaseedharan A. Natural rubber producing plants: An overview. Afr. J. Biotechnol., 2013, 12(12): 1297-1310 CrossRef
  3. Gavrilova V.A.,  Konkova N.G., Kutuzova S.N., Gavrilenko T.A., Pendinen G.I., Dunaeva S.E., Podolnaya L.P., Petrosyan I., Fan Yanxin, Zeng Xiangjun, Zhang Jichuan, Shen Guang. Kok-saghyz (Taraxacum kok-saghyz Rodin) cultivation guidelines. St. Petersburg, 2017: 26-27.
  4. Kumar R. Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Scientia Horticulturae, 2009, 122(1): 142-145 CrossRef
  5. Mokhtarpour H., Teh C.B., Saleh G., Selamat A.B., Asadi M.E., Kamkar B. Non-destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communications in Biometry and Crop Science, 2010, 5(1): 19-26.
  6. Williams L., Martinson T.E. Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines. Scientia Horticulturae, 2003, 98(4): 493-498 CrossRef
  7. Peksen E. Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 2007, 113(4): 322-328 CrossRef
  8. Macfarlane C., Grigg A., Evangelista C. Estimating forest leaf area using cover and fullframe fisheye photography: Thinking inside the circle. Agr. Forest Meteorol., 2007, 146(1-2): 1-12 CrossRef
  9. Greaves H.E., Vierling L.A., Eitel J.U.H., Boelman N.T., Magney T.S., Prager C.M., Griffin K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ., 2015, 164: 26-35 CrossRef
  10. Tsialtas J., Koundouras S., Zioziou E. Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica, 2008, 46(3): 452-456 CrossRef
  11. Gamiely S., Randle W., Mills H., Smittle D. A rapid and nondestructive method for estimating leaf area of onions. HortScience, 1991, 26(2): 206.
  12. NeSmith D.S. Nondestructive leaf area estimation of rabbiteye blueberries. HortScience, 1991, 26: 1332-1332.
  13. Serdar Ü., Demirsoy H. Non-destructive leaf area estimation in chestnut. Scientia Horticulturae, 2006, 108: 227-230 CrossRef
  14. Unigarro-Muñoz C.A., Hernández-Arredondo J.D., Montoya-Restrepo E.C., Medina-Rivera R.D., Ibarra-Ruales L.N., Carmona-González C.Y., Flórez-Ramos C.P. Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 2015, 74(4): 412-416 CrossRef
  15. Sala F., Arsene G.-G., Iordanescu O., Boldea M. Leaf area constant model in optimizing foliar area measurement in plants: A case study in apple tree. Scientia Horticulturae, 2015, 193: 218-224 CrossRef
  16. Tsialtas J., Maslaris N. Leaf area prediction model for sugar beet (Beta vulgaris L.) cultivars. Photosynthetica, 2008, 46(2): 291-293 CrossRef
  17. Montero F., De Juan J., Cuesta A., Brasa A. Nondestructive methods to estimate leaf area in Vitis vinifera L. HortScience, 2000, 35: 696-698.
  18. Dent J.B., Blackie M.J. Systems simulation in agriculture. Springer, 1979 CrossRef
  19. Bakhshandeh E., Kamkar B., Tsialtas J.T. Application of linear models for estimation of leaf area in soybean [Glycine max (L.) Merr]. Photosynthetica, 2011, 49: 405-416 CrossRef
  20. Easlon H.M., Bloom A.J. Easy leaf area: automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Pant Sci., 2014, 2(7): 1-4 CrossRef
  21. Gao M., Van der Heijden G.W.A.M., Vos J., Eveleens B.A., Marcelis L.F.M. Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. Scientia Horticulturae, 2012, 138(1): 227-234 CrossRef
  22. Goudie J.W., Parish R., Antos J.A. Foliage biomass and specific leaf area equations at the branch, annual shoot and whole-tree levels for lodgepole pine and white spruce in British Columbia. Forest Ecol. Manag., 2016, 361: 286-297 CrossRef
  23. Homolová L., Lukeš P., Malenovský Z., Lhotáková Z., Kaplan V., Hanuš J. Measurement methods and variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees, 2013, 27(1): 111-121 CrossRef
  24. Vazquez-Cruz M.A., Luna-Rubio R., Contreras-Medina L.M., Torres-Pacheco I., Guevara-Gonzalez R.G. Estimating the response of tomato (Solanum lycopersicum) leaf area to changes in climate and salicylic acid applications by means of artificial neural networks. Biosyst. Eng.,2012, 112(4): 319-327 CrossRef
  25. Keramatlou I., Sharifani M., Sabouri H., Alizadeh M., Kamkar B. A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 2015, 184: 36-39  CrossRef

back