doi: 10.15389/agrobiology.2018.3.557eng

UDC 631.48:631.461:577.2

Acknowledgments:
The authors declare no conflict of interests

Supported financially by Russian Science Foundation, grant ¹ 17-16-01030 for «Dynamics of soil biota in chronoseries of post-technogenic landscapes: analysis of soil-ecological efficiency of ecosystem restoration processes»

 

DYNAMICS OF THE PLANT COMMUNITY AND MICROBIOM OF
CHRONO-SERIES OF POST-TECHNOLOGICAL SOIL IN LIMESTONE
QUARRY IN THE CONDITIONS OF RECULTIVATION

Ya.A. Dmitrakova1, E.V. Abakumov1, E.A. Pershina2, E.A. Ivanova2,
E.E. Andronov2

1Saint-Petersburg State University, 7-9, Universitetskaya nab., Petersburg, 199034 Russia, e-mail e_abakumov@mail.ru (✉ corresponding author);
2All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail pershina.elizaveta@yandex.ru, eeandr@gmail.com

ORCID:
Dmitrakova Ya.A. orcid.org/0000-0002-5248-9018
Abakumov E.V. orcid.org/0000-0003-1589-9875
Pershina E.A. orcid.org/0000-0002-5204-262X
Ivanova E.A. orcid.org/0000-0002-6980-4854
Andronov E.E. orcid.org/0000-0003-0834-3211

Received October 5, 2017

 

Post-technogenic ecosystems represent informative natural models of initial pedogenesis and restoration under the abandoned and reclamation practices. These soils can be considered as natural experiments on restoration of microbial communities within the age row (time series or chronoseries). Investigation of different aged stages of soil formation on the spoil banks of the quarries give a possibility to obtain initial data on the rate and trends of the pedogenesis in various combinations of substrates and phytocenosis. Among the quarries of mineral substrates in North-West region, particular place is devoted to quarries for lime stone exploitation located on Izhora upland. The purpose of this study conducted in one of the largest limestone quarries of Leningrad region was to examine succession of plant and microbial communities. Species composition and vegetation cover were estimated for different plant communities within each ecotype of quarry. Also at the each plot the following characteristics of soil were measured: pH; organic carbon; soil basal respiration and substrate induced respiration; texture; CO2 of carbonates and moisture content. Total soil DNA was exctracted using PowerSoil® DNA Isolation Kit (Mo Bio Laboratories, Inc., USA), sequencing of v4, the variable region of 16S rRNA gene pDNA, was conducted using a third-generation GS Junior sequenator (Roshe, Switzerland). The results were processed using the QIIME software. To compare microbial communities, the alpha and beta diversity analyses were performed. Our results highlighted that the main difference between plant communities of different plots were due to position in the landscape, most similar communities colonize similar ecotypes. The microbial communities of the old (35 years or more) dumps are essentially specific, and communities of microorganisms of young (8-16 years) and middle-aged (28-30 years) dumps tend to group into separate clusters. As compared to young and middle age dumps, old dumps are characterized by a significant (6-8-fold) increase in the counts of Micromonosporaceae and Sinobacteraceae representatives. Communities of young dumps have 4.2 times more Pseudomonas and 3.8 timesmore Micrococcaceae members than the communities of old ones. The communities of wet terraces also differ from the microbiomes of the other ecotopes (dry terraces, the bases of the dumps), however, no significant differences could be identified. The main issue for successful soil reclamation is the restoration of the microbial community. It was shown that copiotrophes, the microorganisms adapted to high concentration of soil nutrients, dominate in the youngest soils. As microbial succession proceeded, oligotrophs which are involved in organic matter decomposition become dominating. It was established that the processes connected with transformation of organic matter became the main drivers of soil formation, which is especially important for initial stages of soil body restoration. Data on soil microbiomes and microbiomes of soil-vegetation complexes could be the most important tools for reclamation practices.

Keywords: primary succession of plant and microbial communities, limestone quarries, pedogenesis, metagenome, reclamation.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Williamson N.A., Johnson M.S., Bradshaw A.D. Mine wastes reclamation. Mining Journal Books, Ltd., London, United Kingdom, 1982.
  2. Abakumov E., Trubetskoj O., Demin D., Celi L., Cerli C., Trubetskaya O. Humic acid characteristics in podzol soil chronosequence. Chem. Ecol., 2010, 26: 59-66 CrossRef
  3. Abakumov E.V., Maksimova E.I., Lagoda A.V., Koptseva E.M. Soil formation in the quarries for limestone and clay production in the Ukhta region. Eurasian Soil Science, 2011, 44(4): 380-385 CrossRef
  4. Isachenko G.A., Reznikov I.A. Biosfera, 2014, 2: 196-200 (in Russ.).
  5. Abakumov E.V., Cajthaml T., Brus J., Frouz J. Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. J. Soils Sediments, 2013, 13(3): 491-500 CrossRef
  6. Johnson N., Payton P., Spalding A. The conservation value of metalliferous mine sites in Cornwall. Cornwall Archaeological Unit and Institute of Cornish Studies, Truro, 1996.
  7. Key R. Bare ground and the conservation of invertebrates. British Wildlife, 2000, 11: 183-191.
  8. Androkhanov V.A., Ovsyannikova S.V., Kurachev V.M. Tekhnozemy: svoistva, rezhimy, funktsionirovanie [Technozems: properties, modes, functioning]. Novosibirsk, 2000 (in Russ.).
  9. Archegova I.B. Vestnik instituta biologii Komi nauchnogo tsentra Ural'skogo otdeleniya RAN, 2013, 3(179): 24-27 (in Russ.).
  10. Kurá? V., Frouz J., Kurá? M., Mako A., Shustr V., Cejpek J., Romanov O.V., Abakumov E.V. Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia. Eurasian Soil Science, 2012, 45(3): 266-272 CrossRef
  11. Andronov E.E., Petrova S.N., Pinaev A.G., Pershina E.V., Rakhimgalieva S.Zh., Akhmedenov K.M., Gorobets A.V., Sergaliev N.Kh. Pochvovedenie, 2012, 2: 173 (in Russ.).
  12. Koptseva E.M. Estestvennoe vosstanovlenie rastitel'nosti na tekhnogennykh mestoobitaniyakh Krainego Severa: Yamal'skii sektor Arktiki [Natural restoration of vegetation on technogenic habitats of the Far North: Yamal sector of the Arctic]. St. Petersburg, 2005 (in Russ.).
  13. Neshataev V.Yu., Karapukhin N.S., Efremov D.F., Knol' V.V., Neshataev M.V., Shtak K.D. Prakticheskoe posobie po vosstanovleniyu rastitel'nogo pokrova na zemlyakh, narushennykh otkrytymi gornymi razrabotkami pri osvoenii mestorozhdenii poleznykh iskopaemykh v usloviyakh Kamchatskogo kraya [Recommendation on restoration of vegetation on lands destroyed by open mining of minerals in Kamchatka territory]. St. Petersburg, 2012 (in Russ.).
  14. Sumina O.I. Formirovanie rastitel'nosti na tekhnogennykh mestoobitaniyakh Krainego Severa Rossii. Avtoreferat doktorskoi dissertatsii [Formation of vegetation on technogenic habitats of the Russian Far North. DSci Thesis]. St. Petersburg, 2011 (in Russ.).
  15. Abakumov E.V., Gagarina E.I. Pochvoobrazovanie v posttekhnogennykh ekosistemakh kar'erov na Severo-Zapade Russkoi ravniny [Soil genesis in post-technogenic of quarries in the North-West of the Russian Plain]. St. Petersburg, 2006 (in Russ.).
  16. Yarwood S., Wick A., Williams M., Daniels W.L. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis. Microb. Ecol., 2015, 69(2): 383-394 CrossRef
  17. Labbé L., Lanctôt B., Fortin, J.A. Étalement des îlots d’aulnes et enrichis sement dessolsau complexe La Grande. Rapport pour la Vice-présidence Environnement, Hydro-Québec. Institut de recherche en biologie végétale de Montréal, Montréal, Qué., 1995.
  18. Laitinen J., Rehell S., Oksanen J. Community and species responses to water level fluctuations with reference to soil layers in different habitats of mid-boreal mire complexes. Plant Ecol., 2008, 194(1): 17-36 CrossRef
  19. Gretarsdottir J., Aradottir A.L., Vandvik V., Heegaard E., Birks H.J.B. Long-term effects of reclamation treatments on plant succession in Iceland. Restor. Ecol., 2004, 12(2): 268-278 CrossRef
  20. Tormo J., Bochet E., Garcia-Fayos P. Roadfill revegetation in semiarid Mediterranean environments. Part II: Topsoiling, species selection, and hydroseeding. Restor. Ecol., 2007, 15(1): 97-102 CrossRef
  21. Stifeev A.I., Golovastikova A.V., Bessonova E.A. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2011, 4(4): 40-41 (in Russ.).
  22. Dangi S.R., Stahl P.D., Wick A.F., Ingram L.J., Buyer J.S. Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Sci. Soc. Am. J., 2012, 76(3): 915-924 CrossRef
  23. Acosta-Martinez V., Dowd S.E., Sun Y., Wester D., Allen V. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Appl. Soil Ecol., 2010, 45(1): 13-25 CrossRef
  24. Liu S., Liu W., Yang M., Zhou L., Liang H. The genetic diversity of soil bacteria affected by phytoremediation in a typical barren rare earth mined site of South China. SpringerPlus, 2016, 5(1): 1131 CrossRef
  25. Li Y., Wen H., Chen L., Yin T. Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS ONE, 2014, 9(12): e115024 CrossRef
  26. Luna L., Pastorelli R., Bastida F. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Appl. Soil Ecol., 2016, 107: 33-47 CrossRef
  27. Polyanskaya L.M. Mikrobnaya suktsessiya v pochve. Avtoreferat doktorskoi dissertatsii [Microbila cussession in soil. DSci Thesis]. Moscow, 1998 (in Russ.).
  28. Fierer N., Leff J.W., Adams B.J., Nielsen U.N., Bates S.T., Lauber C.L., Owens S., Gilberte J.A., Wall D.H., Caporaso J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS USA, 2012, 109(52): 21390-21395 CrossRef
  29. Zhang C., Xue S., Liu G.B., Zhang C.S. Effects of slope aspect on soil chemical and microbial properties during natural recovery on abandoned cropland in the Loess plateau, China. Progress in Environmental Science and Engineering, 2011, 356-360: 2422-2429 CrossRef
  30. Shaposhnikov A.I., Belimov A.A., Kravchenko L.V., Vivanco J.M. Interaction of rhizosphere bacteria with plants: mechanisms of formation and factors of efficiency in associative symbiosis (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 16-22 (in Russ.).
  31. Burns R.G., DeForest J.L, Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem., 2013, 58: 216-234 CrossRef
  32. Ananyeva N.D., Susyan E.A., Chernova O.V., Wirth S. Microbial respiration activities of soils from different climatic regions of European Russia. Eur. J. Soil Biol., 2008, 2: 147-157.
  33. Tsitovich I.K. Kurs analiticheskoi khimii [Analytical chemistry]. Moscow, 1994 (in Russ.).
  34. Rastvorova O.G. Fizika pochv (prakticheskoe rukovodstvo) [Soil physics]. Leningrad, 1983 (in Russ.).
  35. Ponomareva V.V., Plotnikova T.A. V knige: Problemy pochvovedeniya /Pod redaktsiei M.A. Glazovskoi, I.A. Sokolova [Pedology. M.A. Glazovskaya, I.A. Sokolov (eds.)]. Moscow, 1978: 65-72 (in Russ.).
  36. Anderson J.P.E., Domsch K.H.A. Physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem., 1978, 10(3): 215-221 CrossRef
  37. Blanchet F.G., Legendre P., Borcard D. Forward selection of explanatory variables. Ecology, 2008, 89(9): 2623-2632 CrossRef
  38. Ter Braak C.J.F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67(5): 1167-1179 CrossRef
  39. Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19): 2460-2461 CrossRef
  40. Huber J.A., Butterfield D.A., Baross J.A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subsea floor habitat. Appl. Environ. Microb., 2002, 68: 1585 CrossRef
  41. Hugron S., Andersen R., Poulin M., Rochefort L. Natural plant colonization of borrow pits in boreal forest highlands of eastern Canada. Botany, 2011, 89: 451-465 CrossRef
  42. Gilardelli F., Sgorbati S., Armiraglio S., Citterio S., Gentili R.. Assigning plant communities to a successional phase: time trends in abandoned limestone quarries. Plant Biosyst., 2016, 150(4): 799-808 CrossRef
  43. ?ehounková K., Prach K. Spontaneous vegetation succession in gravel—sand pits: a potential for restoration. Restor. Ecol., 2008, 2(16): 305-312 CrossRef
  44. Karim M.N., Mallik A.U. Roadside revegetation by native plants: I. Roadside microhabitats, floristic zonation and species traits. Ecol. Eng., 2008, 32(3): 222-237 CrossRef
  45. Kershaw G.P., Kershaw L.J. Successful plant colonizers on disturbances in tundra areas of northwestern Canada. Arctic Alpine Res., 1987, 19(4): 451-460 CrossRef
  46. Alpert P. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol., 2000, 151(1): 5-17 CrossRef
  47. Beckett R.P., Kranner I., Minibayeva F.V. Stress physiology and the symbiosis. In: Lichen biology. 2nd ed. T.H. Nash, III (ed.). Cambridge University Press, Cambridge, UK, 2008.
  48. Sancho L.G., de la Torre R., Horneck G., Ascaso C., de los Rios A., Pintado A., Wierzchos J., Schuster M. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology, 2007, 7(3): 443-454 CrossRef
  49. Tsvelev N.N. Opredelitel' sosudistykh rastenii Severo-Zapadnoi Rossii (Leningradskaya, Pskovskaya i Novgorodskaya oblasti) [Identification keys of vascular plants in the North-West of the Russia (Leningradm Pskov, and Novgorod regions]. St. Petersburg, 2000 (in Russ.).
  50. Hoda?ová D, Prach K. Spoil heaps from brown coal mining: technical reclamation vs spontaneous revegetation. Restor. Ecol., 2003, 11: 385-391 CrossRef
  51. Mudrák O., Frouz J., Velichová V. Underestory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol. Eng., 2010, 36: 783-790 CrossRef
  52. Šebelíková L., Rehounková K., Prach K. Spontaneous regeneration vs. forestry reclamation in post-mining sand pits. Environ. Sci. Pollut. Res., 2016, 23: 13598-13605.
  53. Tropek R., Cerná I., Straka J., Cízek O., Konvicka M. Is coal combustion the last chance for vanishing insects of inland drift sand dunes in Europe? Biol. Conserv., 2013, 162: 60-64 CrossRef
  54. Archegova I.B. Pochvovedenie, 1992, 1: 58-64 (in Russ.).
  55. Anan'eva N.D. Mikrobiologicheskie aspekty samoochishcheniya i ustoichivosti pochv [Microbiological aspects of soil self-restoration and sustainability]. Moscow, 2003 (in Russ.).
  56. Jenkinson D.S., Ladd J.N. Microbial biomass in soil: measurement and turnover. Soil Biochemistry, 1981, 5: 415-471.
  57. Prikhod'ko V.E., Sizemskaya M.L. Pochvovedenie, 2015, 8: 974 (in Russ.).
  58. Frouz J., Nováková A. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma, 2005, 129: 54-64 CrossRef
  59. Mummey D.L., Stahl P.D., Buyer J.S. Soil microbiological properties 20 years after surface mine reclamation: spatial analysis or reclaimed and undisturbed sites. Soil Biol. Biochem., 2002, 34: 1717-1725 CrossRef
  60. Megharaj M., Naidu R., Ramadass K., Samkumar R.A., Satheesh V., Subashchandrabose S.R., Thavamani P., Venkateswarlu K. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Environ. Pollut., 2017, 230: 495-505 CrossRef
  61. Doughari H.J., Ndakidemi P.A., Human I.S., Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ., 2011, 26: 101-112 CrossRef
  62. Urbanova M., Kopecky J., Valaskova V., Mareckova M.S., Elhottova D., Kyselkova M., Loccoz Y.M., Baldrian P. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol. Ecol., 2011, 78: 59-69 CrossRef
  63. Andronov E.E., Ivanova E.A., Pershina E.V., Orlova O.V., Kruglov Yu.V., Belimov A.A., Tikhonovich I.A. Byulleten' Pochvennogo instituta im. V.V. Dokuchaeva, 2015, 80: 83-94 (in Russ.).
  64. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb., 2009, 75: 5111-5120 CrossRef
  65. Kaiser K., Wemheuer B., Korolkow V., Wemheuer F., Nacke H., Schöning I. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 2016, 6: 33696 CrossRef
  66. Rousk J., Beeth E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4: 1340-1351 CrossRef

back