doi: 10.15389/agrobiology.2015.3.278rus

УДК 633.358:577.212.3:577.218

Работа финансово поддержана Российским научным фондом
(№ 14-24-00135).

«СЕКВЕНИРОВАНИЕ СЛЕДУЮЩЕГО ПОКОЛЕНИЯ» ДЛЯ ИЗУЧЕНИЯ
ТРАНСКРИПТОМНЫХ ПРОФИЛЕЙ ТКАНЕЙ И ОРГАНОВ ГОРОХА
 ПОСЕВНОГО (Pisum sativum L.)
(обзор)

В.А. ЖУКОВ, О.А. КУЛАЕВА, А.И. ЖЕРНАКОВ, И.А. ТИХОНОВИЧ

Термин «секвенирование следующего поколения» (от англ. Next Generation Sequencing, NGS) объединяет современные технологии, позволяющие получать информацию о нуклеотидном составе десятков и сотен миллионов последовательностей в одном эксперименте. Технологии NGS используются для решения широкого круга задач (секвенирование геномов, оценка экспрессии генов, разработка молекулярных маркеров, изучение метагенома микробных сообществ, эпигенетические исследования и пр.). Одно из важнейших применений метода NGS связано с анализом экспрессии генов с помощью секвенирования транскриптома (всех транскрибируемых РНК). В обзоре рассмотрены подходы, применяемые для тотального анализа экспрессии генов при помощи «секвенирования следующего поколения» — RNAseq (РНК-секвенирование) и его модификация MACE (Massive Analysis of cDNA Ends — массовый анализ концов кДНК). В указанной модификации, разработанной компанией «GenXPro GmbH» (Франкфурт-на-Майне, Германия), у каждой молекулы кДНК секвенированию подвергается только фрагмент размером 100-500 п.н., прилежащий к 3´-концу транскрипта (в другом варианте — к 5´-концу транскрипта); таким образом, разрешение метода возрастает в несколько раз. За счет этого при использовании MACE можно детектировать транскрипты с низкой экспрессией, соответствующие ключевым регуляторным генам, составляющим основу биологических процессов. Также в обзоре описан функциональный анализ результатов РНК-секвенирования, в том числе выявление биологических закономерностей на основании обнаружения дифференциально экспрессирующихся генов. Важный этап этой работы — иерархическая кластеризация выявляемых транскриптов в соответствии с принципами генной онтологии. Гены и генные продукты, взаимодействуя друг с другом, образуют структурированную регуляторную сеть, однако выявление и анализ таких регуляторных сетей представляет собой сложную задачу, решение которой требует развития математических методов и накопления данных об экспрессии генов, локализации генных продуктов и их функциональной аннотации. В обзоре приведены примеры изучения транскрипционного профиля тканей и органов гороха посевного (Pisum sativum L.), в том числе с использованием методики MACE. Таким образом, применение NGS для исследования экспрессии генов на сегодняшний день представляется оптимальным подходом, позволяющим изучать транскрипционные профили любых объектов. Сочетание технологий NGS и возможностей современной компьютерной биологии открывает новые перспективы изучения транскриптомов, в том числе у немодельных видов, что обеспечивает поступательное развитие многих направлений биологической науки.

Ключевые слова: генетика растений, «секвенирование следующего поколения», РНК-секвенирование, экспрессия генов, горох посевной.

 

Полный текст

 

«NEXT GENERATION SEQUENCING» FOR STUDYING
TRANSCRIPTOME PROFILES OF TISSUES AND ORGANS
OF GARDEN PEA (Pisum sativum L.) (review)

V.A. Zhukov, O.A. Kulaeva, A.I. Zhernakov, I.A. Tikhonovich

The term «Next Generation Sequencing» refers to modern technologies that help to obtain information about the nucleotide composition of tens and hundreds of millions of sequences in one experiment. NGS technologies are used to solve a wide range of problems (genome sequencing, gene expression assays, development of molecular markers, metagenomic studies of microbial communities, epigenetic studies etc.). One of the major applications of the NGS methods is concerned with analysis of gene expression by sequencing of transcriptome (the whole set of transcribed RNA). The review considers the approaches used for total gene expression analysis by «Next Generation Sequencing» — RNAseq (RNA sequencing) and its modification MACE (Massive Analysis of cDNA Ends). In this modification, developed by GenXPro GmbH (Frankfurt am Main, Germany), for each cDNA molecule only a 100-500 bp fragment (which is adjacent to the 3´-end of the transcript or, in another version, to its 5´-end) is subjected to sequencing; thus, the resolution of the method is increased by several times. In this way, MACE can capture the transcripts with low expression level, which correspond to the key regulatory genes forming the basis of biological processes. Also the review describes functional analysis of RNA sequencing, including the identification of biological patterns based on the detection of differentially expressed genes. An important step of this work is a hierarchical clustering of detected transcripts in accordance with the principles of gene ontology. The genes and gene products interact with each other to form a structured regulatory network, but the identification and analysis of regulatory networks is a complex task that requires the development of mathematical methods and the accumulation of data on gene expression, localization of gene products and their functional annotation. The review presents case studies of transcriptional profiles of the tissues and organs of pea (Pisum sativum L.), including those using the MACE technique. Thus, the use of NGS for gene expression studies is, at the moment, the optimal approach for studying the transcriptional profiles of any objects. The combination of NGS and potential of modern computational biology opens up new opportunities for studying the transcriptomes, including those of non-model species, that ensures progressive advance in many areas of biological science.

Keywords: plant genetics, «Next Generation Sequencing», RNA sequencing, gene expression, garden pea.

 

ФГБНУ Всероссийский НИИ сельскохозяйственной
микробиологии
,
196608 Россия, г. Санкт-Петербург—Пушкин, ш. Подбельского, 3,
e-mail: zhukoff01@yahoo.com

Поступила в редакцию
2 февраля 2015 года

 

Оформление электронного оттиска

назад в начало