doi: 10.15389/agrobiology.2015.3.267eng

UDC 633.31/.37:581.557.2:577.175.19

Supported by Russian Science Foundation (project № 14-24-00135).

NEGATIVE HORMONAL REGULATION OF SYMBIOTIC NODULE
DEVELOPMENT. I. ETHYLENE (review)

A.V. Tsyganova, V.E. Tsyganov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia;
e-mai:l tsyganov@arriam.spb.ru

Received September 30, 2014

 

The process of symbiotic nodule formation resulting from interaction between legume plants and rhizobia is controlled by both partners. From the plant side the important role belongs to a system of hormonal regulation, involving all classes of phytohormones identified in plants. Negative regulation of nodulation is very important for the plant since the symbiotic nodule formation is highly energy-consuming process. Moreover, nodules lacking nitrogen fixation might be formed during interaction with ineffective strain of rhizobia, and it is disadvantageous for the plant. Up to now, there are data about involving of four phytohormones into negative regulation of nodule formation: ethylene, abscisic, jasmonic and salicylic acids. In this review, the role of ethylene in negative regulation of nodulation is discussed. Ethylene negatively regulates the number of developing symbiotic nodules at different stages of their formation. The first negative effect of ethylene appears at the level of calcium spiking, triggered by Nod-factors produced by rhizobia. Further, ethylene negatively influences deformations of roots hairs, stimulated by Nod-factors, infection thread growth, as well as nodule primordium development. In tropical legume Sesbania rostrata Bremek. & Oberm. ethylene represses the activity of nodule meristem, leading to formation of determinate type of nodule (with temporal meristem activity), while at the absence of ethylene indeterminate nodules (with prolonged meristem activity) are formed. At the same time, it was found that in soybean Glycine max (L.) Merr., ethylene is not involved in regulation of nodulation. It seems that ethylene involvement into regulation of nodule formation is not strictly dependent on the type of nodules, since in the other legume plants, forming determinate nodules, number of nodules is negatively affected by ethylene. It is suggested that ethylene synthesis in inoculated roots is triggered by Nod-factors, which activate plant defense responses, leading to restriction of number of forming nodules. Hypernodulating mutant of Medicago truncatula Gaertn. sickle, carrying a mutation in the gene MtEIN2, which is the key component in ethylene signal transduction pathway, is characterized by decreased level of defense response activation, as it was shown by proteomic analysis. It is interesting that not only the plants, but rhizobia as well can control ethylene level in rhizosphere and therefore influence nodule number. One of such mechanisms is the synthesis of rhizobitoxin by some rhizobial strains, which has structural similarity with inhibitor of ethylene synthesis aminoethoxyvinilglycine (AVG). The other mechanism is more widespread among rhizobia and it deals with synthesis of ACC deaminase, an enzyme, which cleaves the precursor of ethylene synthesis 1-aminocyclopropane-1-carboxylic acid (ACC). Thus, regulation of ethylene level may be important for practical application, potentially allowing to increase plant’s ability to nodulation. However, it should be taken into account that nodule number is precisely regulated by the plant because nodule formation is very energy-consuming process. Even more, it is necessary to remember that ethylene stimulates development of root hairs and decrease of their level may influence an intake ability of root and lead to deficiency of nutrient elements.

Keywords: plant-microbe interactions, legume-rhizobial symbiosis, symbiotic nodule, phytohormones, ethylene, rhizobia, plant defense, ACC deaminase, rhizobitoxin.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Tsyganova A.V., Kitaeva A.B., Brewin N.J., Tsyganov V.E. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 34-40 (http://www.agrobiology.ru/3-2011tsiganova.html). 
  2. Tsyganova V.A., Tsyganov V.E. Uspekhi sovremennoi biologii, 2012, 132(2): 211-222.
  3. Oldroyd G.E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev. Microbiol., 2013, 11: 252-263 CrossRef
  4. Cooper J.E. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J. Appl. Microbiol., 2007, 103: 1355-1365 CrossRef
  5. Geurts R., Federova E., Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infecton. Curr. Opin. Plant Biol., 2005, 8: 346-352 CrossRef
  6. Kouchi H., Imaizumi-Anraku H., Hayashi M., Hakoyama T., Nakagawa T., Umehara Y., Suganuma N., Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol., 2010, 51: 1381-1397 CrossRef
  7. Borisov A.Yu., Shtark O.Yu., Zhukov V.A., Nemankin T.A., Naumkina T.S., Pinaev A.G., Akhtemova G.A., Voroshilova V.A., Ovchinnikova E.S., Rychagova T.S., Tsyganov V.E., Zhernakov A.I., Kuznetsova E.V., Grishina O.A., Sulima A.S., Fedorina Ya.V., Chebotar' V.K., Bisseling T., Lemanceau P., Gianinazzi- Pearson V., Ratet P., Sanjuan J., Stougaard J., Berg G., McPhee K., Ellis N., Tikhonovich I.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 41-47 (http://www.agrobiology.ru/3-2011borisov.html).
  8. Timmers A.C.J. The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J. Microsc., 2008, 231: 247-256 CrossRef
  9. Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., 2004, 68: 280-300 CrossRef
  10. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., Satiat-Jeunemaître B., Alunni B., Bourge1 M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T.,  Kondorosi E., Mergaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 2010, 327(5969): 1122-1126 CrossRef
  11. Brewin N.J. Plant cell wall remodelling in the Rhizobium-Legume symbiosis. Crit. Rev. Plant Sci., 2004, 23: 293-316 CrossRef
  12. Udvardi M., Poole P.S. Transport and metabolism in legume-rhizobia symbioses. Ann. Rev. Plant Biol., 2013, 64: 781-805 CrossRef
  13. Guinel F.C., Geil R.D. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can. J. Bot., 2002, 80: 695-720 CrossRef
  14. Desbrosses G.J., Stougaard J. Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe, 2011, 10(4): 348-358 CrossRef
  15. Ryu H., Cho H., Choi D., Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol. Cells, 2012, 34(2): 117-126 CrossRef
  16. Suzaki T., Ito M., Kawaguchi M. Genetic basis of cytokinin and auxin functions during root nodule development. Front. Plant Sci., 2013, 4: 1-6 CrossRef
  17. Nagata M., Suzuki A. Effects of phytohormones on nodulation and nitrogen fixation in leguminous plants. In: Advances in biology and ecology of nitrogen fixation. T. Ohyama (ed.).InTech, Rijeka, Croatia,2014: 111-128 CrossRef
  18. Hayashi S., Gresshoff P.M., Ferguson B.J. Mechanistic action of gibberellins in legume nodulation. J. Integr. Plant Biol., 2014, 56(10): 971-978 CrossRef
  19. Ferguson B.J., Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol., 2014, 40: 770-790 CrossRef
  20. Drennan D.S.H., Norton C. The effect of ethrel on nodulation in Pisum sativum L.Plant Soil, 1972, 36: 53-57 CrossRef
  21. Goodlass G., Smith K.A. Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil, 1979, 51: 387-395 CrossRef
  22. Grobbelaar N., Clarke B., Hough M.C. The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil, 1971, Spec. Vol.: 215-221 CrossRef
  23. Peters N.K., Crist-Estes D.K. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol., 1989, 91(2): 690-693 CrossRef
  24. Caba J.M., Recalde L., Ligero F. Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ., 1998, 21: 87-93 CrossRef
  25. Ligero F., Caba J.M., Lluch C., Olivares J. Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol., 1991, 97(3): 1221-1225 CrossRef
  26. Lee K.H., LaRue T.A. Ethylene as a possible mediator of light- and nitrate-induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol., 1992, 100(3): 1334-1338 CrossRef
  27. Lee K.H., LaRue T.A. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol., 1992, 100(4): 1759-1763 CrossRef
  28. Libbenga K.R., Harkes P.A.A. Initial proliferation of cortical cell the formation of root nodules in Pisum sativum L. Planta, 1973, 114: 17-28 CrossRef
  29. Heidstra R., Yang W.C., Yalcin Y., Peck S., Emons A., Kammen A., Bisseling T. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development, 1997, 124: 1781-1787.
  30. Oldroyd G.E.D., Engstrom E.M., Long S.R. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 2001, 13: 1835-1849 CrossRef
  31. Penmetsa R.V., Cook D.R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 1997, 275(5299): 527-530 CrossRef
  32. Fernandez-Lopez M., Goormachtig S., Gao M., D’Haeze W., Van Mon-
    tagu M., Holsters M. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. PNAS USA, 1998, 95(21): 12724-12728 CrossRef
  33. Zaat S.A.J., Van Brussel A.A.N., Tak T., Lugtenberg B.J.J., Kijne J.W. The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the «thick and short roots» phenotype. Planta, 1989, 177: 141-150 CrossRef
  34. Van Spronsen P.C., Van Brussel A.A.N., Kjine J.W. Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. Eur. J. Cell Biol., 1995, 68(4): 463-469.
  35. Fearn J.C., LaRue T.A. Ethylene inhibitors restore nodulation to sym 5 mutants of Pisum sativum L. cv. Sparkle. Plant Physiol., 1991, 96(1): 239-244 CrossRef
  36. Guinel F.C., Sloetjes L.L. Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J. Exp. Bot., 2000, 51(346): 885-894 CrossRef
  37. Guinel F.C., LaRue T.A. Light microscopy study of nodulation initiation in Pisum sativum L. cv. Sparkle and its low-nodulating mutant E2 (sym 5). Plant Physiol., 1991, 97(3): 1206-1211 CrossRef
  38. Markwei C.M., LaRue T.A. Phenotypic characterization of sym21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle. Physiol. Plant., 1997, 100(4): 927-932 CrossRef
  39. Lee K.H., LaRue T.A. Pleiotropic effects of sym-17. A mutation in Pisum sativum L. cv. Sparkle causes decreased nodulation, altered root and shoot growth and increased ethylene production. Plant Physiol., 1992, 100(3): 1326-1333 CrossRef
  40. Penmetsa R.V., Uribe P., Anderson J., Lichtenzveig J., Gish J.-C., Nam Y.W., Engstrom E., Xu K., Sckisel G., Pereira M., Baek J.M., Lopez-Meyer M., Long S.R., Harrison M.J., Singh K.B., Kiss G.B., Cook D.R. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J., 2008, 55: 580-595 CrossRef
  41. Prayitno J., Imin N., Rolfe B.G., Mathesius U. Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis. J. Proteome Res., 2006, 5: 3084-3095 CrossRef
  42. Nukui N., Ezura H., Yuhashi K.I., Yasuta T., Minamisawa K. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol., 2000, 41(7): 893-897 CrossRef
  43. Schauser L., Roussis A., Stiller J., Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature, 1999, 402(6758): 191-195 CrossRef
  44. Lohar D., Stiller J., Kam J., Stacey G., Gresshoff P.M. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann. Bot., 2009, 104(2): 277-285 CrossRef
  45. Chan P.K., Biswas B., Gresshoff P.M. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected «hypernodulation» response in Lotus japonicus. J. Integr. Plant Biol., 2013, 55: 395-408 CrossRef
  46. Miyata K., Kawaguchi M., Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signalling in Lotus japonicus. Plant Cell Physiol., 2013, 54(9): 1469-1477 CrossRef
  47. Tsyganov V.E., Pavlova Z.B., Kravchenko L.V., Rozov S.M., Borisov A.Y., Lutova L.A., Tikhonovich I.A. New gene Crt (curly roots) controlling pea (Pisum sativum L.) root development. Ann. Bot., 2000, 86(6): 975-981 CrossRef
  48. Pavlova Z.B., Tsyganov V.E., Kravchenko L., Lutova, L.A. Use of pea (Pisum sativum L.) mutants impaired in nodulation and root formation to study the role of phytohormones in nodule development. Proc. 12th Int. Congr. «Nitrogen fixation: from molecules to crop productivity». F.O. Pedrosa, M. Hungria, G. Yates, W.E. Newton (eds.). Dordrecht, Boston, London, 2000: 244 CrossRef
  49. Tsyganov V.E., Pavlova Z.B., Hlavachka A., Lutova L.A., Baluška F., Volkmann D., Borisov A.Y., Tikhonovich I.A. Mutational analysis of ehtylene functions in pea (Pisum sativum L.) root morphogenesis and nodule development. Book of abstracts of the 5th Eur. Nitrogen Fixation Conference. Norwich, 2002: 10.5.
  50. Li X., Lei M., Yan Z., Wan Q., Chen A., Sun J., Lou D. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytol., 2014, 201(2): 531-544 CrossRef
  51. Hunter W.J. Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max. Appl. Environ. Microbiol., 1993, 59(6): 1947-1950.
  52. Suganuma N., Yamauchi H., Yamamoto K. Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci., 1995, 111: 163-168 CrossRef
  53. Schmidt J.S., Harper J.E., Hoffman T.K., Bent A.F. Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol., 1999: 119(3): 951-960 CrossRef
  54. Puiatti M., Sodek L. Ethylene and the inhibition of nodulation and nodule activity by nitrate in soybean. Rev. Bras. Fisiol. Veg., 1999, 11(3): 169-174.
  55. Tamimi S.M., Timko M.P. Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil, 2003, 257: 125-131 CrossRef
  56. Ma W., Penrose D.M., Glick B.R. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can. J. Microbiol., 2002, 48(11): 947-954 CrossRef
  57. Yuhashi K.-I., Ichikawa N., Ezura H., Akao S., Minakawa Y., Nukui N., Yasuta T., Minamisawa K. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol., 2000, 66: 2658-2663 CrossRef
  58. Duodu S., Bhuvaneswari T.V., Stokkermans T.J.W., Peters N.K. A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol. Plant-Microbe Interact., 1999, 12(12): 1082-1089 CrossRef
  59. Ma W., Guinel F.C., Glick B.R. Rhizobium leguminosarum biovar viciae 1-amino-cyclopropane-carboxylate deaminase promotes nodulation of pea plants. Appl. Environ. Microbiol., 2003, 69(8): 4396-4402 CrossRef
  60. Safronova V.I., Piluzza G., Zinovkina N.Y., Kimeklis A.K., Belimov A.A., Bullitta S. Relationships between pasture legumes, rhizobacteria and nodule bacteria in heavy metal polluted mine waste of SW Sardinia. Symbiosis, 2012, 58 (1-3): 149-159 CrossRef
  61. Murset V., Hennecke H., Pessi G. Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis, 2012, 57(1): 43-50 CrossRef

back