doi: 10.15389/agrobiology.2014.3.3eng

UDC 631.461.52:574.2:575.1/.2

DEFENSE RESPONSES DURING THE LEGUME—Rhizobium SYMBIOSIS: INDUCTION AND SUPPRESSION (review)

K.A. Ivanova, V.E. Tsyganov

All-Russian Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences,
3, sh. Podbelskogo, St. Petersburg, 196608 Russia,
e-mail tsyganov@arriam.spb.ru

Received March 19, 2014


Development of the legume-Rhizobium symbiosis when bacteria infect cells of legume plants has many similarities with pathogenic infection development. Symbiotic partners exchange with signal molecules, which have similarities with phytoalexins and elicitors, producing during pathogenic infection. Both processes are accompanied by the induction of defense reactions of the host plant; however, induction of these reactions during symbiosis is under strong regulation that allows forming a symbiotic nodule. Number of nodules is also under control, due to the fact that their formation is energy-intensive process and the most infections are aborted in the early stages. Studies of molecular-genetic mechanisms of development of the legume-Rhizobium symbiosis and pathogenic infection revealed that during evolution the legumes adapted receptors accommodated originally for mycorrhizal infection perception to establish symbiosis with rhizobia, and similar receptors are used for perception of pathogens and induction of defense response. It was also shown that bacteria exploit III and IV types of secretion systems (T3SS and T4SS), which pathogenic bacteria use for delivery of virulent factors in host cells. It was demonstrated, that T3SS is able to activation of signal transduction pathway, leading to nodule development, independently from Nod-factor. Different surface polysaccharides (exopolysaccharides, lipopolysaccharades and cyclic β-glucans) are used by rhizobia as well as pathogenic bacteria for suppression of plant defense reactions. In nodules of some legume plants bacteria undergo terminated differentiation into bacteroids under action of antimicrobial NCR peptides.

Keywords: nodulation, defense response, Nod-factors, chitin oligosaccharides, surface polysaccharides, bacterial differentiation, NCR peptides, BacA, secretion systems T3SS and T4SS, pathogens.

 

Full article (Rus)

 

REFERENCES

1. Downie J.A. Functions of rhizobial nodulation genes. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria /H.P. Spaink, A. Kondorosi, P.J.J. Hooykaas (eds.). Kluwer Academic Publishers, Dordrecht, the Netherlands, 1998: 387-402 (ISBN: 978-94-011-5060-6).
2. Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., 2004, 68: 280-300. CrossRef
3. Oldroyd G.E.D., Downie J.M. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 2008, 59: 519-546. CrossRef
4. Kouchi H., Imaizumi-Anraku H., Hayashi M., Hakoyama T., Nakagawa T., Umehara Y., Suganuma N., Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol., 2010, 51: 1381-1397. CrossRef
5. Tsyganova A.V., Kitaeva A.B., Brewin N.J., Tsyganov V.E. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 3: 34-40.
6. Downie J.A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev., 2010, 34(2): 150-170. CrossRef
7. Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C. How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nat. Rev. Microbiol., 2007, 5: 619-633. CrossRef
8. Tsyganova V.A., Tsyganov V.E. Uspekhi sovremennoi biologii, 2012, 132(2): 211-222.
9. Nakagawa T., Kaku H., Shimoda Y., Sugiyama A., Shimamura M., Takanashi K., Yazaki K., Aoki T., Shibuya N., Kouchi H. From defense to symbiosis: Limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume—Rhizobium symbiosis. Plant J., 2011, 65: 169-180. CrossRef
10. De Mita S., Streng A., Bisseling T., Geurts R. Evolution of a symbiotic receptor through gene duplications in the legume—rhizobium mutualism. New Phytol., 2014, 201(3): 961-972. CrossRef
11. Kereszt A., Mergaert P., Maróti G., Kondorosi É. Innate immunity effectors and virulence factors in symbiosis. Curr. Opin. Microbiol., 2011, 14(1): 76-81. CrossRef
12. Deakin W.J., Broughton W.J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol., 2009, 7: 312-320. CrossRef
13. Okazaki S., Kaneko T., Sato S., Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. PNAS USA, 2013, 110(42): 17131-17136. CrossRef
14. Osipova M.A., Mortier V., Demchenko K.N., Tsyganov V.E., Tikhonovich I.A., Lutova L.A., Dolgikh E.A., Goormachtig S. Wuschel-Related Homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. Plant Physiol., 2012, 158(3): 1329-1341. CrossRef
15. Vasse J., De Billy F., Truchet G. Abortion of infection during the Rhizobium meliloti—alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J., 1993, 4: 555-566. CrossRef
16. Tsyganov V.E., Morzhina E.V., Stefanov S.Y., Borisov A.Y., Lebsky V.K., Tikhonovich I.A. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol. Gen. Genet., 1998, 256: 491-503. CrossRef
17. Morzhina E.V., Tsyganov V.E., Borisov A.Y., Lebsky V.K., Tikhonovich I.A. Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis. Plant Sci., 2000, 155: 75-83. CrossRef
18. Boller T., Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol., 2009, 60: 379-406. CrossRef
19. Hamel L.P., Beaudoin N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant—microbe interactions. Planta, 2010, 232: 787-806. CrossRef
20. Shibuya N., Minami E. Oligosaccharide signaling for defense responses in plant. Physiol. Mol. Plant Pathol., 2001, 59: 223-233. CrossRef
21. Zhang B., Ramonell K., Somerville S., Stacey G. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact., 2002, 15(9): 963-970. CrossRef
22. Gough C., Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant—microbe interactions. Mol. Plant Microbe Interact., 2011, 24(8): 867-878. CrossRef
23. Gust A.A., Willmann R., Desaki Y., Grabherr H.M., Nürnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci., 2012, 17(8): 495-502. CrossRef
24. Madsen E.B., Antolin-Llovera M., Grossmann C., Ye J., Vieweg S., Broghammer A., Krusell L., Radutoiu S., Jensen O.N., Stougaard J.,  Parniske M. Autophosphorylation is essential for in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signaling in cooperation with Nod factor receptor 5. Plant J., 2011, 65: 404-417. CrossRef
25. El Yahyaoui F., Kuster H., Ben Amor B., Hohnjec N., Puhler A., Becker A., Gouzy J., Vernie T., Gough C., Niebel A., Godiard L., Gamas P. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol., 2004, 136(2): 3159-3176. CrossRef
26. Hogslund N., Radutoiu S., Krusell L., Voroshilova V., Hannah M.A., Goffard N., Sanchez D.H., Lippold F., Ott T., Sato S., Tabata S., Liboriussen P., Lohmann G.V., Schauser L., Weiller G.F., Udvardi M.K.,  Stougaard J. Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants. PLoS ONE, 2009, 4(8): 1-14. CrossRef
27. Lohar D.P., Sharopova N., Endre G., Penuela S., Samac D., Town C., Silverstein K.A., VandenBosch K.A. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol., 2006, 140(1): 221-234. CrossRef
28. Becker A., Pühler A. Production of exopolysaccharides. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria /H.P. Spaink, A. Kondorosi, P.J.J.  Hooykaas (eds.). Kluwer Academic Publishers, Dordrecht, the Netherlands, 1998: 97-118 (ISBN: 978-94-011-5060-6).
29. Cheng H.P., Walker G.C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol., 1998, 180(19): 5183-5191.
30. Jones K.M., Sharopova N., Lohar D.P., Zhang J.Q., VandenBosch K.A.  Walker G.C. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. PNAS USA, 2008, 105(2): 704-709. CrossRef
31. Albus U., Baier R., Holst O., Puhler A., Niehaus K. Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol., 2001, 151(3): 597-606. CrossRef
32. Fraysse N., Couderc F., Poinsot V. Surface polysaccharide involvement in establishing the Rhizobium—legume symbiosis. Eur. J. Biochem., 2003, 270(7): 1365-1380. CrossRef
33. Scheidle H., Gross A., Niehaus K. The lipid A substructure of the Sinorhizobium meliloti lipopolysaccharides is sufficient to suppress the oxidative burst in host plants. New Phytol., 2005, 165(2): 559-565. CrossRef
34. Lerouge I., Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant—microbe interactions. FEMS Microbiol. Rev., 2002, 26(1): 17-47. CrossRef
35. Campbell G.R.O., Sharypova L.A., Scheidle H., Jones K.M., Niehaus K., Becker A., Walker G.C. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. J. Bacteriol., 2003, 185(13): 3853-3862. CrossRef
36. D’Haeze W., Glushka J., De Rycke R., Holsters M., Carlson R.W. Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol. Microbiol., 2004, 52: 485-500. CrossRef
37. Beck S., Marlow V.L., Woodall K., Doerrler W.T., James E.K., Ferguson G.P. The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis. Microbiology, 2008, 154: 1258-1270. CrossRef
38. Theunis M., Kobayashi H., Broughton W.J., Prinsen E. Flavonoids, NodD1, NodD2, and Nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol. Plant Microbe Interact., 2004, 17(10): 1153-1161. CrossRef
39. Broughton W.J., Hanin M., Relic B., Kopciñska J., Golinowski W., Simsek S., Ojanen-Reuhs T., Reuhs B., Marie C., Kobayashi H., Bordogna B., Le Quéré A., Jabbouri S., Fellay R., Perret X., Deakin W.J. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp strain NGR234-legume symbioses. J. Bacteriol., 2006, 188(10): 3654-3663. CrossRef
40. Breedveld M.W., Miller K.J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev., 1994, 58(2): 145-161.
41. Dunlap J., Minami E., Bhagwat A., Keister D.L., Stacey G. Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic b-glucan. Mol. Plant Microbe Interact., 1996, 9(7): 546-555. CrossRef
42. Chen R., Bhagwat A.A., Yaklich R., Keister D.L. Characterization of ndvD, the third gene involved in the synthesis of cyclic beta-(1→3),(1→6)-D-glucans in Bradyrhizobium japonicum. Can. J. Microbiol., 2002, 48(11): 1008. CrossRef
43. D’Antuono A.L., Casabuono A., Couto A., Ugalde R.A., Lepek V.C. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Mol. Plant Microbe Interact., 2005, 18(5): 446-457. CrossRef
44. Saier M.H. Evolution of bacterial type III protein secretion systems. Trends Microbiol., 2004, 12: 113-115. CrossRef
45. Hueck C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev., 1998, 62: 379-433.
46. Caskales E., Christie P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol., 2003, 1: 137-149. CrossRef
47. Salzwedel J.L., Dazzo F.B. pSym nod gene influence on elicitation of peroxidase activity from white clover and pea roots by rhizobia and their cell-free supernatants. Mol. Plant. Microbe Interact., 1993, 6(1): 127-134. CrossRef
48. Cook D., Dreyer D., Bonnet D., Howell M., Nony E., VandenBosch K. Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell, 1995, 7(1): 43-55. CrossRef
49. Gardner C.D., Sherrier D.J., Kardailsky I.V., Brewin N.J. Localization of lipoxygenase proteins and mRNA in pea nodules: identification of lipoxygenase in the lumen of infection threads. Mol. Plant Microbe Interact., 1996, 9(4): 282-289. CrossRef
50. Wisniewski J.P., Rathbun E.A., Knox J.P., Brewin N.J. Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol. Plant Microbe Interact, 2000, 13(4): 413-420. CrossRef
51. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., Satiat-Jeune-maître B., Alunni B., Bourge1 M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T.,  Kondorosi E., Mergaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 2010, 327(5969): 1122-1126. CrossRef
52. Mergaert P., Nikovics K., Kelemen Z., Maunoury N., Vaubert D., Kondorosi A., Kondorosi E. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol., 2003, 132(1): 161-173. CrossRef
53. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol., 2005, 3: 238-250 (doi: 10.1038/nrmicro1098).
54. Oono R., Schmitt I., Sprent J.I., Denison R.F. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol., 2010, 187(2): 508-520. CrossRef

back